Claudio Pita-Ruiz

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 24, 2018, Number 1, Pages 16—42

DOI: 10.7546/nntdm.2018.24.1.16-42

**Download full paper: PDF, 261 Kb**

## Details

### Authors and affiliations

Claudio Pita-Ruiz

*Facultad de Ingenierıa, Universidad Panamericana
Augusto Rodin 498, Mexico, Ciudad de Mexico, 03920, Mexico
*

### Abstract

We consider the sequence , product of the *rp*-th degree *n*-polynomial , where *a*, *b* ∈ ℂ, *a* ≠ 0, *r*, *p* ∈ ℕ, and the -th degree n-polynomial , where *α _{s}*,

*β*∈ ℂ,

_{s}*r*,

_{s}*p*∈ ℕ,

_{s}*s*= 2, …,

*l*. In the expansion of the polynomial in terms of the binomials , , the resulting coefficients are the generalized Eulerian numbers we consider in this work (the case

*P*(

*n*) = 1,

*a*= 1,

*b*= 0

*, r*= 1 corresponds to the standard Eulerian numbers). We obtain results on symmetries, recurrences, row sums, and alternating row sums, that generalize the corresponding well-known results for the standard Eulerian numbers. The main tool we use to obtain our results throughout the work, is the Z-transform of sequences.

### Keywords

- Generalized Eulerian numbers

### 2010 Mathematics Subject Classification

- 11B83

### References

- Carlitz, L. (1952) Note on a Paper of Shanks, Amer. Math. Monthly, 59, 4, 239–241.
- Carlitz, L. (1978) A Note on
*q*-Eulerian Numbers, J. Combin. Theory Ser. A, 25, 90–94. - Carlitz, L. (1959) Eulerian numbers and polynomials, Math. Mag., 32, 247–260.
- Carlitz, L. (1954) q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76, 332–350.
- Carlitz, L. (1975) A combinatorial property of
*q*-Eulerian numbers, Amer. Math. Monthly, 82, 51–54. - Carlitz, L. (1960) Eulerian numbers and polynomials of higher order, Duke Math. J., 27, 401–423.
- Carlitz, L. (1964) Extended Bernoulli and Eulerian numbers, Duke Math. J., 31, 667–689.
- Carlitz, L., & Riordan, J. (1953) Congruences for Eulerian Numbers, Duke Math. J., 20, 339–343.
- Dilcher, K. Bernoulli and Euler Polynomials, Digital Library of Mathematical Functions, Chapter 24. Available at: http://dlmf.nist.gov/24.
- Euler, L. (1755) Institutiones Calculi Differentialis, Academiae Imperialis Scientiarum Petropolitanae.
- Foata, D. (2010) Eulerian Polynomials: from Euler’s Time to the Present, in “The Legacy of Alladi Ramakrishnan in the Mathematical Sciences”, Springer, 253–273.
- Foata, D., & Schutzenberger, M. P. (1970) Theorie geometrique des polynomes Euleriens, Lecture Notes in Mathematics, Vol. 138, Springer.
- Gould, H. W. (1972) Combinatorial Identities, Morgantown, W. Va.
- Graf, U. (2004) Applied Laplace Transforms and
*z*-Transforms for Scientists and Engineers: A Computational Approach using a Mathematica Package, Birkh¨auser. - Hsu, L. C., & Shiue, P. J. S. (1999) On certain summation problems and generalizations of Eulerian polynomials and numbers, Discrete Math., 204, 237–247.
- Koutras, M. V. (1994) Eulerian Numbers Associated with Sequences of Polynomials, Fibonacci Quart., 32, 44–57.
- Lehmer, D. H. (1982) Generalized Eulerian Numbers, J. Combin. Theory Ser. A, 32, 195–215.
- Lin, Z. (2013) On some generalized
*q*-Eulerian polynomials, DMTCS Proc. AS., 439–450. - Petersen, T. K. (2015) Eulerian Numbers, Birkhauser.
- Savage, C. D., & Viswanathan, G., The 1/
*k*-Eulerian Polynomials, Available online at: http://www4.ncsu.edu/~savage/PAPERS/The_1_over_k_Eulerian_Polynomials.pdf. - Shanks, E. B. (1951) Iterated Sums of Powers of the Binomial Coefficients, Amer. Math. Monthly, 58, 404–407.
- Stanley, R. P. (1997) Enumerative Combinatorics, Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press.
- Vilch, R. (1987) Z Transform. Theory and Applications, D. Reidel Publishing Company.
- Worpitzky, J. (1883) Studien ¨uber die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math., 94, 203–232.
- Xiong, T., Tsao, H. P., & Hall, J. I. (2013) General Eulerian Numbers and Eulerian Polynomials, Journal of Mathematics, Vol. 2013, ID 629132.

## Related papers

- Shiue, P. J., Huang, S. C., & Reyes, J. E. (2021). Algorithms for computing sums of powers of arithmetic progressions by using Eulerian numbers. Notes on Number Theory and Discrete Mathematics, 27(4), 140-148.
- Shiue, P. J., Huang, S. C., & Jameson, E. (2020). On algorithms for computing the sums of powers of arithmetic progressions. Notes on Number Theory and Discrete Mathematics, 26 (4), 113-121.

## Cite this paper

Pita-Ruiz, C. (2018). On a generalization of Eulerian numbers. Notes on Number Theory and Discrete Mathematics, 24(1), 16-42, doi: 10.7546/nntdm.2018.24.1.16-42.