Arzu Özkoç and Ahmet Tekcan

Ömür Deveci and Anthony G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132

Volume 23, 2017, Number 3, Pages 38–52

**Full paper (PDF, 205 Kb)**

## Details

### Authors and affiliations

Arzu Özkoç

*Düzce University, Faculty of Science Department of Mathematics
Konuralp, Düzce, Turkey
*

Ahmet Tekcan

*Uludag University, Faculty of Science Department of Mathematics,
Görukle, Bursa, Turkey
*

### Abstract

In this work, we consider some algebraic properties of *k-*balancing numbers. We deduce some formulas for the greatest common divisor of *k*-balancing numbers, divisibility properties of *k*-balancing numbers, sums of *k*-balancing numbers and simple continued fraction expansion of *k*-balancing numbers.

### Keywords

- Balancing number
- Pell number
- Binary linear recurrences

### AMS Classification

- 11B37
- 11B39

### References

- Behera, A. & Panda, G. K. (1999) On the Square Roots of Triangular Numbers. The Fibonacci Quarterly, 37(2), 98–105.
- Dash, K. K., Ota, R. S. & Dash, S. (2012)
*t*−Balancing Numbers. Int. J. Contemp. Math. Sciences, 7(41), 1999–2012. - Kovacs, T., Liptai, L. & Olajos, P. (2010) On (
*a*,*b*)−Balancing Numbers. Publ. Math. Debrecen 77/3-4 , 485–498. - Liptai, K., Luca, F. , Pinter, A. & Szalay, L. (2009) Generalized Balancing Numbers. Indag. Mathem., N.S., 20(1), 87–100.
- Olajos, P. (2010) Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Annales Mathematicae et Informaticae, 37, 125–138.
- Panda, G. K. (2009) Some Fascinating Properties of Balancing Numbers. Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer. 194, 185–189.
- Panda, G. K. & Ray, P. K. (2011) Some Links of Balancing and Cobalancing Numbers with Pell and Associated Pell Numbers. Bul. of Inst. of Math. Acad. Sinica 6(1), 41–72.
- Ray, P. K. (2009) Balancing and Cobalancing Numbers. PhD thesis, Department of Mathematics, National Institute of Technology, Rourkela, India.
- Tekcan, A., Tayat, M. & Özbek, M. (2014) The Diophantine Equation 8
*x*^{2}−*y*^{2}+*8x*(1 +*t*) + (2*t*+ 1)^{2}= 0 and*t*−Balancing Numbers. ISR Combinatorics 2014, Article ID 897834, 5 pages.

## Related papers

- Mehraban, E., & Hashemi, M. (2023). Coding theory on the generalized balancing sequence.
*Notes on Number Theory and Discrete Mathematics*, 29(3), 503-524. - Tekcan, A., & Türkmen, E. Z. (2023). Almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers.
*Notes on Number Theory and Discrete Mathematics*, 29(4), 682-694.

## Cite this paper

Özkoç, A., & Tekcan, A. (2017). On k-balancing numbers. *Notes on Number Theory and Discrete Mathematics*, 23(3), 38-52.