Romeo Meštrović

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 20, 2014, Number 4, Pages 33—36

**Download full paper: PDF, 140 Kb**

## Details

### Authors and affiliations

Romeo Meštrović

*Maritime Faculty, University of Montenegro
Dobrota 36, 85330 Kotor, Montenegro
*

### Abstract

If we suppose that *S* = {*p*_{1}, *p*_{2}, …, *p _{k}*} is a set of all primes, then taking

*x*=

*p*

_{1}

*p*

_{2}…

*p*+ 1 into a formula due to E. Meissel in 1854 gives

_{k}(

*p*

_{1}− 1)(

*p*

_{2}− 1)…(

*p*− 1) = 0.

_{k}This obvious contradiction yields the infinitude of primes.

### Keywords

- Euclid’s theorem
- Infinitude of primes
- Euclid’s proof
- Euler’s proof(s)
- Möbius inversion formula
- Meissel formula

### AMS Classification

- Primary: 11A41
- Secondary: 11A51, 11A25

### References

- Burton, D. M., Elementary Number Theory, Sixth edition, McGraw–Hill, 2007.
- Dickson, L. E., History of the Theory of Numbers, Vol. I. Divisibility and Primality, Carnegie Institution ofWashington, 1919, 1920, 1923. [Reprinted Stechert, New York, 1934; Chelsea, New York, 1952, 1966, Vol. I.]
- Euler, L., (1734/35), De summis serierum reciprocarum, Comment. Acad. Sci. Petropol., Vol. 7, 1740, 123–134. [In Opera omnia, I.14, 73–86, Teubner, Lipsiae et Berolini, 1924.]
- Euler, L., (1736), Inventio summae cuiusque seriei ex dato termino generale (posthumuous paper), Comment. Acad. Sci. Petropol., Vol. 8, 1741, 9–22. [In Opera omnia, I.14, 108–123, Teubner, Lipsiae et Berolini, 1924].
- Euler, L., (1737), Variae observationes circa series infinitas, Comment. Acad. Sci. Petropol., Vol. 9, 1744, 160–188. [In Opera omnia, I.14, 216–244, Teubner, Lipsiae et Berolini, 1924.]
- Heath, T. L., The Thirteen Books of Euclid’s Elements, Vol. 2, University Press, Cambridge, 1908; 2nd ed. reprinted by Dover, New York, 1956.
- Kummer, E. E., Neuer elementarer Beweis des Satzes, dass die Anzahl aller Primzahlen eine unendliche ist, Monatsber. Preuss. Akad. Wiss., Berlin 1878/9, 777–778. [Collected Papers II, 669–670, Springer, Berlin-Heidelberg, 1975.]
- Meissel, E., Observationes quaedam in theoria numerorum, J. Reine Angew. Math., Vol. 48, 1854, 301–316.
- Meštrović, R., Euclid’s theorem on the infinitude of primes: A historical survey of its proofs (300 B.C.–2012), 66 pages, 2012, preprint arXiv:1202.3670v2[math.HO]
- Narkiewicz, W., The Development of Prime Number Theory: from Euclid to Hardy and Littlewood, Springer Monographs in Mathematics, Springer–Verlag, Berlin, 2000.
- Pollack, P., Not Always Burried Deep: Selections from Analytic and Combinatorial Number Theory, American Mathematical Society, 2009.
- Ribenboim, P., The little book of bigger primes, Second edition, Springer–Verlag, New York, 2004.
- Sándor, J., Crstici, B., Handbook of Number Theory II , Kluwer Academic Publishers, Dordrecht, 2004.
- Shapiro, H. N., Introduction to the Theory of Numbers, John Wiley & Sons, New York, 1983.

## Related papers

## Cite this paper

Meštrović, R. (2014). Euler–Euclid’s type proof of the infinitude of primes involving Möbius function Notes on Number Theory and Discrete Mathematics, 20(4), 33-36.