Diana Savin
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 20, 2014, Number 2, Pages 10—19
Download full paper: PDF, 202 Kb
Details
Authors and affiliations
Diana Savin
Ovidius University of Constanta
Faculty of Mathematics and Computers Science
Bd. Mamaia no. 124, Constanta, 900527, Romania
Abstract
A study of Fibonacci primes of the form x2 + ry2 (where r = 1; r = prime or r = perfect power) is provided.
Keywords
- Fibonacci numbers
- Quadratic fields
- Computational number theory
- Algebraic number theory computations
AMS Classification
- 11D25
- 11S15
- 11Y40
- 11Y50
References
- Azizi, A., A. Mouhib, Sur le rang du 2-groupe de classes de
ou m = 2 ou un premier p ≡ 1 (mod 4). Transactions of the American Mathematical Society, Vol. 353, 2001, No. 7, 2741–2752.
- Ballot, C., F. Luca, On the equation x2 + dy2 = Fn, Acta Arithmetica, Vol. 172, 2007, No. 2, 145–155.
- Cox, D. Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication, A Wiley – Interscience Publication, New York, 1989.
- Kubota,T. Uber den bizyklischen biquadratischen Zahlkorper. Nagoya Math. Journal, Vol. 10, 1956, 65–85.
- Lehmer, E. On the Cubic Character of Quadratic Units. Journal of Number Theory, Vol. 5, 1973, 385–389.
- Lehmer, E. On the quartic character of quadratic units. J. Reine Angew. Math., Vol. 268/269, 1974, 294–301.
- Lemmermeyer, F. Reciprocity laws, from Euler to Eisenstein. Springer-Verlag, Heidelberg, 2000.
- Mouhib, A. On the parity of the class number of multiquadratic number fields. Journal of Number Theory, Vol. 129, 2009, 1205–1211.
- Savin, D., M. Stefanescu, Lectures of Arithmetic and Number theory, Edit. Matrix Rom, 2008 (in Romanian).
- Savin, D., Stefanescu, M. A necessary condition for certain Primes to be written in the form xq + ryq, Journal of Algebra and Its Applications, Vol. 10, 2011, No. 3, 435–443.
- Sun, Z. H. Congruences for Fibonacci numbers, http://www.hytc.cn/xsjl/szh
- Sun, Z. H., Z.W. Sun. Fibonacci numbers and Fermat’s last theorem. Acta Arithemtica, Vol. 60, 1992, 371–388.
- Sun, Z. H. Constructing x2 for primes p = ax2 + by2, Adv. in Appl. Math., Vol. 48, 2012, No. 1, 106–120.
- http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibmaths.html
- Magma algebra system, http://magma.maths.usyd.edu.au/magma/
Related papers
Cite this paper
Savin, D. (2014). Fibonacci primes of special forms. Notes on Number Theory and Discrete Mathematics, 20(2), 10-19.