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1 Introduction

The prime numbers that can be written as x2+ny2, for n∈N∗, have been studied in [3]. Necessary
and sufficient conditions for a prime p to be written as p = x2 + ny2, with n ∈N∗, have been
determined. One of the results of Cox’s book [3] is:

Proposition 1.1. [3] Let n be a square free positive integer which is not congruent to 3 modulo
4. Then there exists a monic irreducible polynomial f∈Z[X] of degree h(∆), such that, if p is an
odd prime that doesn’t divide n or the discriminant of f and E = HCF (K) is the Hilbert class
field of K = Q(

√
−n), the following statements are equivalent:

(i) p = x2 + ny2, for some x, y∈N.
(ii) p completely splits in E.
(iii)

(
−n
p

)
= 1 and the congruence f(x) ≡ 0 (mod p) has solutions in Z.

Moreover, f is the minimal polynomial of a real algebraic integer α such that E = K(α).

In [5], [6] is given a characterization of some such primes p, when n≡3 (mod 4) and the class
number of the quadratic field Q

(√
−n
)

is 1, namely n∈{11, 19, 43, 67, 163}: p is represented by
x2 + ny2 if and only if the corresponding cubic field equation splits completely modulo p if and
only if the roots of the resolvent quadratic equation are cubic residues of p. The field equations
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and the corresponding root αn can be taken as:

n field equation root αn of the resolvent

11 x3 + 6x− 34 = 0 17 + 3
√

33

19 x3 − 2x+ 2 = 0 27 + 3
√

57

43 x3 − 4x− 4 = 0 54 + 6
√

129

67 x3 − 30x− 106 = 0 53 + 3
√

201

163 x3 − 8x− 10 = 0 135 + 3
√

489

Theorem 1.1. [6] For q∈{11, 19, 43, 67, 163} and for αq defined above, a prime positive integer

number p≡1 (mod 12) such that the Legendre symbol
(
p
q

)
= 1 is represented by p = x2 + qy2, if

and only if the cubic character
(
αq

p

)
3

= 1.

In this paper we try to determine the prime Fibonacci numbers that can be written in the form
x2 + ry2, where r = 1, r is a prime natural number or r is a power of a prime number.
Recall that the Fibonacci sequence is defined by:

(Fn)n≥0, F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, n ≥ 0.

Sometimes the sequence is given under the form:

Fn =
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]
.

In [2], Luca and Ballot studied the Fibonacci numbers Fn = |x2 + dy2| , from another point of
view. By denotingNd = {n > 0 : Fn = |x2 + dy2| , x, y ∈ Z} , they proved that for any d = ±t2,
t ∈ N, the set Nd has positive lower asymptotic density.
We recall some properties of quadratic fields which are necessary in our proofs.

Proposition 1.2. [1] Let p, q be two dictinct prime numbers, p ≡ q ≡ 1 (mod 4) and h the class
number of the biquadratic field K = Q

(√
p,
√
q
)
. If

(
p
q

)
= 1, then h is odd if and only if(

p
q

)
4
6=
(
q
p

)
4

(here
( )

4
is the quartic character).

Proposition 1.3. [3] Let K be an algebraic number field and P ∈ Spec(OK). Then P completely
splits in the ring of integers of the Hilbert class field of K if and only if P is a principal ideal in
the ring OK .

Proposition 1.4. [9]Let p be a prime number. Then:
(i) There exist integers x, y such that p = x2 + y2 if and only if p = 2 or

(
−1
p

)
= 1;

(ii) There exist integers x, y such that p = x2 + 2y2 if and only if
(
−2
p

)
= 1,

where ( ) denotes the Legendre symbol.

The following properties of Fibonacci numbers we will use in the following.
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Proposition 1.5. [14] The cycle of the Fibonacci numbers mod 8 is

0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, (0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, ), ...

so the cycle-length of the Fibonacci numbers mod 8 is 12.

Proposition 1.6. [14] Let (Fn)n≥0 be the Fibonacci sequence. If Fn is a prime number, n ≥ 5,

then n is a prime number.

Proposition 1.7. [14] A Fibonacci number Fn is even if and only if n ≡ 0 (mod 3).

Theorem 1.2. [11] (Legendre, Lagrange) If p is an odd prime number, then

Fp ≡
(p

5

)
(modp).

Theorem 1.3. [11] (Legendre, Lagrange) Let p be an odd prime number. Then

Fp−1 ≡
1−

(
p
5

)
2

(modp)

and

Fp+1 ≡
1 +

(
p
5

)
2

(modp).

Theorem 1.4. [11] , [12] Let p /∈ {2, 5} be an odd prime number. Then

F p−( p5 )
2

≡

{
0 (mod p), if p ≡ 1(mod4),

2 (−1)[
p+5
10 ] ·

(
p
5

)
· 5 p−3

4 (mod p), if p ≡ 3(mod4)

where [x] is the integer part of x.

Proposition 1.8. [7] Let K be an algebriac numbers field and hK the class number of K and let
p be a prime positive integer, p does not divide hK . Let I be a nonzero integer ideal in the ring of
integers of K such that Ip is principal. Then I is principal.

2 Fibonacci primes of the form x2 + ry2

Our first remark is:

Remark 2.1. i) If p is a prime Fibonacci number, p 6= 3, then there exist the integers x, y such
that p = x2 + y2.

ii) If p is a prime Fibonacci number, p ≡ 1 (mod 8), then there exist the integers x, y such that
p = x2 + 2y2.

Proof. i) Case 1. p = 2 = F3. We obtain 2 = 12 + 12.

Case 2. p = Fm ≥ 5 is an odd prime number, applying Proposition 1.6 it results that m is an
odd prime number.
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The assertion results from the identity: F2n+1 = F 2
n + F 2

n+1, g.c.d (Fn, Fn+1) = 1.

Thus, all the odd prime Fibonacci numbers p = Fn are congruent with 1 (mod 4) and are sums
of two perfect squares.

ii) If p≡1 (mod 8) is a Fibonacci prime number (see Proposition 1.5), applying Proposition
1.4 (ii) we obtain that there exist two integers x, y such that p = x2 + 2y2.

A natural idea is to ask ourselves if there exist Fibonacci numbers Fp of the form Fp =

x2 + p2y2, where p is a prime positive integer. The following result has been obtained:

Proposition 2.1. i) For each p, a prime number, p ≥ 7, p≡1 (mod 4), there exist integer numbers
x, y so that, the Fibonacci number Fp can be written as Fp = x2 + p2y2.

ii) For each p, a prime numberr, p ≥ 7, p≡1 (mod 4), with the property that the Fibonacci
number Fp is a prime number, there exist a unique pair of positive integer numbers x, y so that
the Fibonacci number Fp can be written as: Fp = x2 + p2y2.

Proof. i) It is known that F2n+1 = F 2
n + F 2

n+1, so, if p is an odd prime number, then Fp =

F 2
p+1
2

+F 2
p−1
2

. Since the Legendre symbol
(
p
5

)
is 1 when p≡1, 4 (mod 5) and it is −1 when p≡2, 3

(mod 5), we divide the proof in two cases: 1: p≡1, 4 (mod 5); 2. p≡2, 3 (mod 5).
Case 1: p≡1, 4 (mod 5).
Using the fact that p≡1 (mod 4) and Chinese Remainder Theorem it results that p≡1, 9 (mod

20). Applying Theorem 1.4, it results that F p−1
2
≡0 (mod p). Therefore, there exist integer num-

bers x, y, x = ±F p+1
2

and y = ±
F p−1

2

p
such that Fp = x2 + p2y2.

Case 2: p≡2, 3 (mod 5).
From p≡1 (mod 4) and Chinese Remainder Theorem it results that p≡13, 17 (mod 20). Ap-

plying Theorem 1.4, it results that F p+1
2
≡0 (mod p). We obtain that there exist integer numbers

x, y, x = ±F p−1
2

and y = ±
F p+1

2

p
such that Fp = x2 + p2y2.

ii) If moreover, the Fibonacci number Fp is a prime number, applying (i) and the properties
that Z [i] is a factorial ring and its group of units is U (Z [i]) = {1,−1, i,−i} and Fp≡1 (mod 4)
completely splits in the ring Z [i] , it results that there exist unique positive integer numbers x, y,

x = F p+1
2

and y =
F p−1

2

p
, when p≡1, 9 (mod 20), respectively x = F p−1

2
and y =

F p+1
2

p
when

p≡13, 17 (mod 20), such that Fp = x2 + p2y2.

Remark 2.2. i) The condition p ≡ 1 (mod 4) is necessary in the statement of Proposition 2.1.
Otherwise, if p = 7 ≡ 3 (mod 4), we have F7 = F 2

3 + F 2
4 = 22 + 32, but 7 does not divide F3, 7

does not divide F4. If p = 11 ≡ 3 (mod 4), we have F11 = F 2
5 + F 2

6 = 52 + 82, but 11 does not
divide F5, 11 does not divide F6.

ii) The decomposition of a non - prime positive integer, congruent with 1 mod 4 as a sum of two
square is not unique. For example: F19 = 4181 = 342 + 552 = 412 + 502.

Proposition 2.2. For each positive integer n, n ≡ 7 (mod 16), there exist integer numbers x, y so
that, the Fibonacci number Fn can be written as Fn = x2 + 32y2.
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Proof. Using again that F2n+1 = F 2
n + F 2

n+1 and also that F2n = Fn · Ln so, if n is an odd
positive integer, n ≡ 7 (mod 16) then Fn = F 2

n−1
2

+ F 2
n+1
2

= F 2
n−1
2

+ F 2
n+1
4

· L2
n+1
4

.

We remark that n+1
4
≡ 2 (mod 4) and we can prove imediately that Ln+1

4
≡ 0 (mod 3). Now, the

conclusion of the Proposition is proved.

In the following we study the Fibonacci primes Fp of the form x2 + py2.

A first example of a such a prime is 5 = F5 = 02 + 5 · (±1)2 .

We wish to determine the primes Fp of the form x2 + py2, with x, y positive integers.
With a simple computation in MAGMA sofware ([15]), we obtain:

R 〈x〉 :=PolynomialRing(Integers());
f := x2 + 29;

T:=Thue(f);
T;
Solutions(T,514229);
Submit
Thue object with form: X2 + 29Y 2

[−552, 85],

[552,−85],

[552, 85],

[−552,−85].

So,
514229 = F29 = (±552)2 + 29 · (±85)2 .

Similarly:

233 = F13 = (±5)2 + 13 · (±4)2 , 1597 = F17 = (±38)2 + 17 · (±3)2 .

We remark that in all these examples p ≡ 1 (mod 4). Therefore, the question that arises is:
what happens when p ≡ 3 (mod 4)? First, we tried to apply Theorem 1.1 for p∈{11, 19, 43, 67, 163} ,
but this was not possible because, using [11] we have: F11 is not congruent with 1 (mod 12), F19

is not a prime number, F43 is not congruent with 1 (mod 12), F67 and F163 are not prime numbers.

The following result holds true:

Proposition 2.3. If p is a prime number, p ≡ 3 or 7 (mod 20) then there exists no Fibonacci
number Fp of the form x2 + py2.

Proof. Let p be a prime number, p ≡ 3 or 7 (mod 20). We suppose by reductio ad absurdum
that there exists a Fibonacci number, Fp, such that Fp =x2+py2. Therefore, the Legendre symbol(
Fp

p

)
= 1. But, appplying Theorem 1.2 and the properties of Legendre’ symbol, we have:

(
Fp
p

)
=

((
p
5

)
p

)
=


(

1
p

)
= 1,if p ≡ 1 or 4 (mod 5),(

−1
p

)
= (−1)

p−1
2 , if p ≡ 2 or 3 (mod 5).
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Since p ≡ 3 or 7 (mod 20) it results that p ≡ 2 or 3 (mod 5). So,(
Fp
p

)
=

(
−1

p

)
= (−1)

p−1
2 = −1.

We have obtained a contradiction with the fact that
(
Fp

p

)
= 1.

It is hard to know what happens when p ≡ 11 or 19 (mod 20). With a simple computation in
MAGMA sofware, we obtain that F131 can not be written in the form x2 + 131y2.

Similarly: F359 can not be written in the form x2 + 359y2, but F2971 can be written in the form
x2 + 2971y2.

Now, we study the prime Fibonacci numbers Fp of the form x2 + py2, with p ≡ 1 (mod 4).
First, we give the following remark:

Remark 2.3. LetK be the biquadratic fieldK =Q
(√

p,
√
Fp
)

and letOK be the ring of integers
of this field. Then, the ideal

(√
Fp + y

√
p
)
OK is the square of an ideal of OK .

Proof. It is known that OK is a Dedekind ring for every value of p and Fp. Consider the
Diophantine equation Fp = x2 + py2. Passing to ideals, this Diophantine equation becomes(√

Fp − y
√
p
)
OK ·

(√
Fp + y

√
p
)
OK = x2OK .

It is easy to show that the ideals
(√

Fp − y
√
p
)
OK and

(√
Fp + y

√
p
)
OK are coprimes.

Looking to the last form of our equation and applying a property of Dedekind rings, it results that
there exists an ideal J in the ring OK such that(√

Fp + y
√
p
)
OK = J2 (2.1)

Next, we make a few observations about the last result obtained.
Since p ≡ Fp ≡ 1 (mod 4) and

(
p
Fp

)
= 1, it is known [7] that

(
p

Fp

)
4

=

(
Fp
p

)
4

·
(
εp
Fp

)
,

where εp is a fundamental unity of the field Q(
√
p).

If
(
εp
Fp

)
= −1, then

(
p
Fp

)
4
6=
(
Fp

p

)
4
, and applying Proposition 1.2, it results that hK is odd.

Applying Proposition 1.8 we obtain that J is a principal ideal in the ring OK .

From the relation (2.1) it results that

√
Fp + y

√
p = u

(
a+ b

√
Fp + c

√
p+ d

√
pFp

)2
, (2.2)

where u is a unity in the ring OK .

The fundamental system of unities of the ring OK is
{
εp, εFp ,

√
εpFp

}
, when N

(
εpFp

)
= −1,

respectively
{
εp, εFp ,

√
εpεFpεpFp

}
, when N

(
εpFp

)
= 1 ([4], [8]).
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Concluding, a characterization of prime Fibonacci numbers of the form Fp = x2 + py2, with
p ≡ 1 (mod 4) has been obtained. But, even if Fp is a prime number with special properties, it
is hard to determine the solutions of (2.2). If hK is an even number, it is harder to determine the
solutions of equation (2.2).

In the following we try to give another characterization of prime Fibonacci numbers of the
form Fp = x2 + py2, when p ≡ 1 (mod 4), so p ≡ 1 or 5 (mod 12) using techniques of computa-
tional number theory.

A natural question is: How many prime Fibonacci numbers of the form Fp = x2 + py2 do
exist? From Proposition 1.1 it results that, when p is not congruent with 3 (mod 4), a prime
Fibonacci number has the form Fp = x2 + py2 if and only if Fp completely splits in the ring of
integers of the Hilbert class field for the quadratic field Q (

√
−p) .

If we denote by L = Q (
√
−p) , PL - the set of all finite primes of L, HCF (L) - the Hilbert

class field of L, δ - the Cebotarev density, S - the set of prime from N which completely split in
HCF (L), and T - the set of prime Fibonacci numbers Fp of the form Fp = x2 + py2, applying
a result of [3], the theorem of tranzitivity of finite extensions and Proposition 1.1, we obtain that:
T ⊂ S and

δ (S) =
1

[L : Q] · [HCF (L) : L]
=

1

2 · [HCF (L) : L]
=

1

2 · hL
,

where hL is the order of ideal class group of the ring of integers of L.
So δ (T )≤δ (S) .

With a simple computation with MAGMA we obtain:

Q := Rationals();
Z := RingOfIntegers(Q);
Z;

L := QuadraticField(−50833);
L;

OL := RingOfIntegers(L);
OL;

ClassNumber(OL);
Evaluate
Integer Ring
Quadratic Field with defining polynomial .12 + 50833 over the Rational Field
Maximal Equation Order of L
128.

So, for L = Q
(√
−50833

)
, hL = 128.

If we consider all prime Fibonacci numbers Fp, with p ≡ 1 or 5 (mod 12) known up to now
[12] and we calculate the class number for the field L = Q(

√
−p) , using MAGMA, we obtain:

hQ(
√
−13) = 2, hQ(

√
−17) = 4, hQ(

√
−29) = 6, hQ(

√
−137) = 8, hQ(

√
−449) = 20, hQ(

√
−509) = 30

hQ(
√
−569) = 32, hQ(

√
−9677) = 98, hQ(

√
−25561) = 88, hQ(

√
−30757) = 90, hQ(

√
−50833) = 128.
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We remark that, when a prime p, p ≡ 1 or 5 (mod 12) increases, then δ (S) decreases. Using
the procedure (in MAGMA) described after Proposition 2.2 or the procedure described below,
and applying Propositions 1.3 and 1.1, it results that the only prime Fibonacci numbers Fp of the
form Fp = x2 + py2, with p < 104 are F13, F17, F29, F2971, F9311, F9677.

Q := Rationals();
Z := RingOfIntegers(Q);
Z;
Q < t >:= PolynomialRing(Q);
f := t2 + 17;

K < a >:= NumberField(f);
a;
O := RingOfIntegers(K);
O;
P:=ideal < Z|1597 >;
P;
IsPrime(P);
Decomposition(O, 1597);
M := ideal < O|1597, a+ 545 >;
IsPrime(M);
IsPrincipal(M);
Evaluate
−17

Maximal Equation Order with defining polynomial x2 + 17 over Z
Ideal of Integer Ring generated by 1597
true
[
<Prime Ideal of O
Two element generators:
[1597, 0]

[545, 1] , 1 >

<Prime Ideal of O
Two element generators:
[1597, 0]

[1052, 1] , 1 >

]
Ideal of O
Two element generators:
[1597, 0]

[545, 1]

true
true
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Using Proposition 1.1 we obtain:

Corollary 2.1. All Fibonacci primes Fp, with p < 104, p is not congruent with 3 (mod 4) which
splits completely in the ring of integers of the Hilbert class field for the quadratic field L =

Q(
√
−p) are F13, F17, F29, F9677.

3 Conclusions

In this paper we have obtained certain characterizations of Fibonacci numbers of the form Fp =

x2 +py2, with x, y integer numbers. We proved that there are no prime Fibonacci numbers of this
form when p ≡ 3, 7 (mod 20). We think that there are no Fibonacci primes of this form, when
p ≡ 11, 19 (mod 20) and we intend to study this problem in the future. We also gave elementary,
combinatorial and algebraic characterizations for the studied numbers.
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