A note on some diagonal, row and partial column sums of a Zeckendorf triangle

A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 16, 2010, Number 2, Pages 33–36
Full paper (PDF, 114 Kb)


Authors and affiliations

A. G. Shannon
Warrane College, The University of New South Wales,
Kensington, NSW 1465, Australia


This note fleshes out some of the characteristics of what is referred to as a Zeckendorf triangle which is composed of Fibonacci number multiples of the Fibonacci sequence. It arose it arose in an infinite binary matrix related to the Zeckendorf representations of the non-negative integers.


  • Fibonacci numbers
  • Convolutions
  • Recurrence relations
  • Kronecker delta
  • Zeckendorf representations

AMS Classification

  • 11B39
  • 03G10


  1. Bondarenko, Boris A. 1993. Generalized Pascal Triangles and Pyramids: Their Fractals, Graphs and Pyramids. (Translated by Richard C. Bollinger.) Santa Clara, CA: The Fibonacci Association.
  2. Cook, Charles K., A.G. Shannon. 2006. Generalized Fibonacci and Lucas Sequences with Pascal-type Arrays. Notes on Number Theory & Discrete Mathematics. 12 (4): 1-9.
  3. Griffiths, Martin. 2010. Digit Proportions in Zeckendorf Representations. The Fibonacci Quarterly. 48 (2): 168-174.
  4. Hoggatt, V.E. Jr, Marjorie Bicknell-Johnson. 1977. Fibonacci Convolution Sequences. The Fibonacci Quarterly. 15 (2): 117-122.
  5. Leyendekkers, J.V., A G Shannon. 2001. Expansion of Integer Powers from Fibonacci’s Odd Number Triangle. Notes on Number Theory & Discrete Mathematics, 7 (2): 48-59.
  6. Ollerton, R.L., A.G. Shannon. 1998. Some Properties of Generalized Pascal squares and Triangles. The Fibonacci Quarterly, 36 (2): 98-109.
  7. Riordan, J. 1962. Generating Functions for Powers of Fibonacci Numbers. Duke
    Mathematical Journal. 29 (1): 5-12.
  8. Shannon, A.G., A.F. Horadam. 2002. Reflections on the Lambda Triangle, The Fibonacci Quarterly, 40 (5): 405 – 416. 27.
  9. Shannon A. G., J.C. Turner, K.T. Atanassov.1991. A Generalised Tableau Associated with Colored Convolution Trees. Discrete Mathematics. 92: 329-340.
  10. Sloane, N.J.A., Simon Plouffe. 1995. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press.
  11. Whittington, S.G., G.M. Torrie, A.J. Guttmann. 1979. The Ising Model with a Free Surface: a Series Analysis Study. Journal of Physics A: Mathematical & General.12 (12): 2449-2456.

Related papers

Cite this paper

Shannon, A. G. (2010). A note on some diagonal, row and partial column sums of a Zeckendorf triangle. Notes on Number Theory and Discrete Mathematics, 16(2), 33-36.

Comments are closed.