A. G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132

Volume 10, 2004, Number 4, Pages 89–99

**Full paper (PDF, 120 Kb)**

## Details

### Authors and affiliations

A. G. Shannon

*Warrane College, The University of New South Wales, Kensington 1465, &
KvB Institute of Technology, 99 Mount Street, North Sydney, NSW 2065, Australia*

### Abstract

This paper looks at the Staudt–Clausen theorem within the framework of various generalization of the Bernoulli numbers. The historical background to the problem is reviewed, and a solution to a problem of Morgan Ward is put forward. Generalized Hurwitz series are utilised in the development of the results.

### AMS Classification

- 11B68
- 11A07
- 11B39

### References

- L. Carlitz. “An Analogue of the von Staudt-Clausen Theorem.”
*Duke Mathematical Journal*. 3 (1937): 503-517. - L. Carlitz. “An Analogue of the Staudt-Clausen Theorem.”
*Duke Mathematical Journal*. 7 (1941): 62-67. - L. Carlitz. “The Coefficients of the Reciprocal of a Series.”
*Duke Mathematical Journal*. 8 (1941): 689-700. - L. Carlitz. “q-Bernoulli Numbers and Polynomials.”
*Duke Mathematical Journal*. 15 (1948): 987-1000. - L. Carlitz. “Some Properties of Hurwitz Series.”
*Duke Mathematical Journal*. 16 (1949): 285-295. - L. Carlitz. “A Note on Irreducibility of the Bernoulli and Euler Polynomials.”
*Duke Mathematical Journal*. 19 (1952): 475-481. - L. Carlitz. “The Schur Derivative of a Polynomial.”
*Proceedings of the Glasgow Mathematical Association*. 1 (1953): 159-163. - L. Carlitz. “A Degenerate Staudt-Clausen Theorem.”
*Archiv der Mathematik*. 7 (1956): 28-33. - L. Carlitz. “A Note on the Staudt-Clausen Theorem.”
*American Mathematical Monthly.*64 (1957): 186-188. - L. Carlitz. “Criteria for Kummer’s Congruences.”
*Acta Arithmetica*. 6 (1960): 375-390. - L. Carlitz. “The Staudt-Clausen Theorem.”
*Mathematics Magazine*. 35 (1961): 131-146. - L. Carlitz. “Some Arithmetic Sums Associated with the Greatest Integer Function.”
*Archiv der Mathematik*. 12 (1961): 34-42. - G. Fontené. “Generalization d’une formule connue.”
*Nouv. Ann. Math.*15 (1915): 112. - A.F. Horadam & A.G. Shannon. “Ward’s Staudt-Clausen Problem.”
*Mathematica Scandinavica*. 39 (1976): 239-250. - F. H. Jackson. “q-difference Equations.”
*American Journal of Mathematics.*32 (1910): 305-314. - A. G. Shannon. “Arbitrary Order Circular Functions: An Extension of Results of Glaisher and Lucas.”
*Journal of Natural Science & Mathematics*. 19 (1979): 71-76. - A. G. Shannon. “Some Fermatian Special Functions.”
*Note on Number Theory & Discrete Mathematics*. 9 (2003): 73-82. - A. G. Shannon. “Some Properties of Fermatian Numbers.”
*Note on Number Theory & Discrete Mathematics*: 10 (2004), 2: 25-33. - A. Sharma. “
*q*-Bernoulli and Euler Numbers of Higher Order.” .*Duke Mathematical Journal.*25 (1958): 343-353. - H. S. Vandiver. “Simple Explicit Expressions for Generalized Bernoulli Numbers.”
*Duke Mathematical Journal*. 8 (1941): 575-584. - M. Ward. “A Calculus of Sequences.”
*American Journal of Mathematics*. 58 (1936): 255-266.

## Related papers

## Cite this paper

Shannon, A. G. (2004). A Fermatian Staudt–Clausen Theorem. *Notes on Number Theory and Discrete Mathematics*, 10(4), 89-99.