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ABSTRACT
This paper looks at the Staudt-Clausen theorem within the framework of various
generalization of the Bernoulli numbers. The historical background to the prob-
lem is reviewed, and a solution to a problem of Morgan Ward is put forward.
Generalized Hurwitz series are utilised in the development of the results.

1. INTRODUCTION
Morgan Ward [21] once posed the problem whether a suitable definition for generalized
Bernoulli numbers could be framed so that a generalized Staudt-Clausen Theorem might
exist for them within the framework of the Fontené-Jackson calculus [6,8].

Carlitz [4] outlined a partial generalization of the Staudt-Clausen theorem with the Fon-
tené-Jackson operators. The purpose of this paper is to show that Ward’s problem can be
solved with the adaptation of a method used by Carlitz for the ordinary Staudt-Clausen
theorem [9] and for coefficients of more general series [11].

2. DEFINITIONS

To define these generalized Bernoulli numbers, Bmq , we use the nth reduced Fermatians

of index q as defined in Shannon [17], namely:

t o0
——=> B, t"/q!,
Eq(t)—l ; »q —n (21)
where
E,0=2t"/q 2.2)
n=0
and
-a'q (n<0)
q =41+9g+9° +..+q"" (n>0)
- 1 (n = 0)
and
qn!= gngn—l!’
so that
I,=L1,!=n
Thus,
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B., =B,.

n,1 n

the ordinary Bernoulli numbers, B, for which a form of the Staudt-Clausen theorem can
be stated as follows:

jg < [med P (p=1in
"“10@modp) (p-1/n) (2.3)

where p is an odd prime (and hence n is even). Our analogue of (2.3) for the Fermatian
Bernoulli numbers is in (5.9).

3. GENERALIZED DIFFERENTIAL OPERATORS

Carlitz also studied generalized versions of differential operators in the form of Chak de-
rivatives defined by

Dq(fX)=%- G.1)

He has also investigated properties associated with the Schur derivative
Aa, =(a,, —a,)/ p™, (3.2)

where {am} is a sequence and p is a prime number [7]. In the same spirit then it is con-
venient to define formally the Fermatian differential operator

D, =q x". (33)
It follows that
D, X" =nx"".

Some properties of the Fermatian differential operator follow if we define

D, = (1 - q”)x”‘l, (3.4)
and
D,,0=0,
so that
(1-q)D, X" =(1—g")X"" =D, X". (3.5)
Then

n n
Dx,qax :aDqux ,

where a is a constant, and for f(y), a function of'y,

Do f(Y)=D,,f(Y)D,,V:
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which reduces to the ordinary ‘function of a function rule’ when q is unity.

D.f(y)=D,f(y)D,y
Other properties include
DY =9 ¥"'D,Yy
and
D,q (x” + y“): D, X"+ Dy Y", (3.6)

and, for u,v, functions of X

n n
Dy,uv = ZL }D;quDQq“v,
r=0

which is analogous to Leibnitz’ Theorem for the nth derivative of a product of two func-
tions:

n N
D”uv:Z(r]DruD”‘rV,
r=0

n] q,
r] glq !

The proof of (3.6) follows readily by induction on n. We also define the operator 1,

in which

formally by
gDy ()= F(X). (3.7)
and
Dy f(¥) =154 f(X).. (3.8)
Thus, for n= -1,
| g :—11_?“ X" +C
-q
n+l
_X +C,
q

—n+l

in which C is a constant determined by the initial conditions, and, for n=—1, we have

X =L, (x)+C
where
0 (_l)rxr+1
L Ad+x)=) ———.
i 2 aq,,

is an analogue of the logarithmic function.
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From (3.5) we have that
I ;ql f (X) = (1 - q)_1 qu f (X):

and so we can introduce |

LAt =(1-0) "1 F(9..
This means that
Iqxf(x): D;le(x).
and
L, FOO=0-l, fF(X)..
When g=1,

n+1
n

X
X :n+l+C,n¢—1,. (3.9)

x1

so that | ,,x" and J.X”dX differ by a constant only, which can be made zero with suitable

limits; that is, the | operation is a generalization of integration. One can also define gen-
eralizations of the circular and hyperbolic functions in a somewhat similar manner [16].

4. GENERALIZED HURWITZ SERIES
We shall call series of the form

at"/ql,
Z; 4, (4.1)

where the a are arbitrary integers, a generalized Hurwitz series (GH-series). When @ is
unity we get an ordinary Hurwitz series [5]. If we consider another GH-series

y b,t"/q !,
ZO q, (4.2)

then the product of (4.1) and (4.2)

i(Z ab,, ]t" /9,', (4.3)

n=0 \ r=0
is also a GH-series.
The Fontené-Jackson type derivatives and integrals of GH-series are also GH-series,
namely

Do at"/q != > a,t"/q !,
n=0 n=0

and
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I

:ian,lt“/gn!.
n=1

t
0

n
1
Ya.x"/q!
n=0
For a series without constant term such as

H, () =>at"/q!,
n=1
it follows from
t
HX(t)/q, = quDXquk(x)/gk!‘O

=1, H (0D H, (0)/4, !\

t
0

(4.4)

that H(t)/ q,! is a GH-series for all k > 1. This result can also be stated in the form

H)(t) =0(modq,!)

where by the statement

Sat"/q =3 bt"/q ! (modq, )
n=0

n=0
is meant that the system of congruences

a,=b, (modgm), (n=0,12,...,)

is satisfied. This is equivalent to the assertion

iant"/gnb ibntn /q.!+q H()
n=0

n=0

where H(t) is some GH-series.
We now consider the class of GH-series

f(t)= iant“ /q.L (a =1
and .
Dy =Y AT, (A =)
where the A, are integers. It follz):vovs from (4.6) and (4.8) that

D, f(H)=) f"(®) (modg, )
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since q_[q_!| A fX(t), k>m It follows from (4.7) that f(0)=0, and so
Do, (1) =1

where Dg, f(t) denotes the rth generalized Fontené-Jackson derivative of f(t) evaluated

at t=0. A result we shall use is

Dee f“()=0 (mod g ). (kD). (49

This arises because
Doy £ (t) = Doy £4(0) f (1)

= f(0)Dgy f (1) + £ *(0)Dgg f (1) (mod g ).

Another result to be used later is
Do f"(t)/q_=q_ !(modq ). (4.10)
Proof:
DA f"(®)/g_ =D (Do f"®)/ 9,

=D (f™ (®)D,, f ()

=Dgq ™ () (modq )

=D (g, ™D, f(®) (modq )

=q_ Dg*f™(t) (modq )

=q_,!(modq ). -

5. FERMATIAN STAUDT-CLAUSEN THEOREM
If we put

fm_l(t): Za;t”/gn!, (5.1
n=m-1
then, since q_|q_!| f "(t) from (4.5),

f ™ () f(t) =0(mod q,)

and we get
n
r

Z{ }a,a,'” =0(mod g ), n>q . (5.2)
r=0

Note that (4.7) and (5.1) imply that
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a‘;’n—l =q L

-1’
From the definition of a,anda,, for r=m=1, Congruence (5.2) reduces to
q_ aa,=0(modq )
so that
a,, =0(modq_) (from [18]).
For n=m+2, (5.2) becomes
. m+ 2 .
qmﬂalamﬂ +|: 2 :|a2am = O(mOdgm)

which simplifies to

gmala;n+1 =0(modq )
so that
a,, = 0(modq )
since
q ., =1+q(modq ) (see [18])
and
1=(1+aq ) (q>0,m>2).

Continuing in this way, we get

a;n = a;ml =..= a;m% = O(modgm)
For n=2m-1, we get

: 2m-1 ,
gzm_lalam_z +...+ m a,a, , = O(modgm),

which gives
q_ &, +8,8,, =0(modq ) (from [18])
so that
By s = 088y, = 08,9 !(modq ).
From (5.1) we get
D £ (1) = i a,t"™/q !
1

n=m-

— A ! m-1
=a,, +a,,t /q !+..

=g, a7 g, L)

=q_ !+qa,f™(t) (modq ). (5.3)
A solution of (5.3) is
- ® . {nem-D
f™(H=q, 1> (d9a,)" —— (modq ). (5.4)
n=1

Inm-1)°
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This can be verified as follows

Dy f™'(=q, 1> (day)

—1)(m-1
Lt

|
n=1 g(n—l)(m—l)'
) tn(m—l)
= ! n
=q_ ' (ga, :
n=0 In(m-1)°

=q_ !+qa,f™'(t) (modq ).
Now let

zngafmy%! (e =1)

denote the inverse of f(t), so that

t=>ef"t/q ! (5.5)
n=1
Differentiating (5.5) we get

I:iqwﬂQQJm

n=0 gn'
Comparison with (4.8) yields
€, =0 (modq !). (5.6)
(5.5) can be re-written as
t/ft=2e.,f"®/q ! (5.7)
n=0

It follows from (4.5) and (5.6) that e, f"(t)/ q_ ! is a GH-series and the coefficients of

f "(t) are multiples of q ! At this stage with ordinary integers one can proceed by us-

ing the fact that n! is a multiple of n+1 except when n+1 is a prime or Nn=3. The situation
for g ! is more complex: from [18] we know that

g,,=9,a")

n—

9n+1 |9n!: H

1
g
i=0

where n+1=mr. So

n-1°

Instead of investigating this further, we define S, by

tH@zi&ﬂ@ﬁ
n=0

And we know from (5.4) and (5.5) that
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> a - .~ trn
t/ f(t) EZ = Z(anﬂ) 1 q (m0d9n+1)

n=0 9n+] r=1 _rn!
) em © i tr(m—l)

=> "% (0a,) — (modg ).
”‘Flgm r=l gm'

Thus, from the definition of £, we get for >0, m>2,
e, (da,)" """ (modq ) (m-1|n),
G E{ O(modg ) (m-1]n).
We next show that
a, +€, =0 (modq_).
From (4.9) and (5.5)

0=>eDnf"t/q !,
n=1

which becomes

This simplifies to
a,+e,q_!/q !=0(modq )
from (4.10) and because
Dy f(H=a, (modq ).
Thus,
a,+€,=0(modq ),
and so, (5.8) becomes
_ q(n/(mfl)fl)a:‘l/(mfl) (mOdgm) (m_l | n),

gmﬂ”z{ 0 (m—1/n),

for m>2, g>0. For
f()=E, 1) -1

M

t”/gn!

1

>
I

a,=1and B, =B, ,. Thus,
qB . = —qmh (modqg ) (m-1|n),
—m ™ 0 (m—=1/n).
for m>2, g>0.

(5.8)

(see (2.1) and (2.2)

(5.9)

When m=p, a prime, and g=1, this reduces to (2.3). (5.9) is not a necessary and sufficient
condition for Fermatian Bernoulli numbers though, because no conditions were imposed
on the allowable values of e (5.9) is an analogue of the Staudt-Clausen Theorem and it

exists for the Fermatian Bernoulli numbers B, .
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6. CONCLUSION
The foregoing does not exhaust possibilities for generalizing the Bernoulli numbers and
the Staudt-Clausen Theorem. Vandiver [20], for instance, defined Bernoulli numbers of
the first order by the umbral equality

b,(m k) = (mb+k)":B, =b_(0,k), (6.1)
so that Vandiver’s form of the Staudt-Clausen Theorem was that for n even,

6.2
(M) = A~ 2

where the ps are distinct primes, relatively prime to non-zero m and such that

n=0(mod p, — 1),

and A, is some integer. Sharma [19] and Carlitz [1,2,8,9,10,11] have also studied ana-

logues of the Staudt-Clausen type. It is of interest to note that Carlitz speculated about the
existence of a theorem of the Staudt-Clausen type for Bernoulli numbers of order k de-
fined by

CENE Z B{t"/nl, (6.3)

and he showed that for k = P, and

n=p~(s(p-1)+1)-1
a form exists, namely,
p'By =(-1)" (mod p).
Furthermore,

p+2 =

BP =0 (mod p).

Another possibility for further research is to study the reducibility of the generalized Ber-
noulli polynomials [6]. Carlitz has used the Staudt-Clausen Theorem and Lagrange’s In-
terpolation Formula to show that the polynomial in X, pB, ;(X)/ X is an Eisenstein poly-

nomial, and hence irreducible. This is also suggests the formal consideration of the pth
Fermatian of index X, X, as the irreducible cyclotomic polynomial, ¢ ,(X):

Xy =@,(X) =1+ X+ X +...+x"",
which satisfies the hypotheses of the Eisenstein criterion.
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