NNTDM 10 (2004), 4 89-99

A FERMATIAN STAUDT-CLAUSEN THEOREM

A. G. Shannon

Warrane College, The University of New South Wales, Kensington 1465, & KvB Institute of Technology, 99 Mount Street, North Sydney, NSW 2065, Australia

ABSTRACT

This paper looks at the Staudt-Clausen theorem within the framework of various generalization of the Bernoulli numbers. The historical background to the problem is reviewed, and a solution to a problem of Morgan Ward is put forward. Generalized Hurwitz series are utilised in the development of the results.

1. INTRODUCTION

Morgan Ward [21] once posed the problem whether a suitable definition for generalized Bernoulli numbers could be framed so that a generalized Staudt-Clausen Theorem might exist for them within the framework of the Fontené-Jackson calculus [6,8].

Carlitz [4] outlined a partial generalization of the Staudt-Clausen theorem with the Fontené-Jackson operators. The purpose of this paper is to show that Ward's problem can be solved with the adaptation of a method used by Carlitz for the ordinary Staudt-Clausen theorem [9] and for coefficients of more general series [11].

2. DEFINITIONS

To define these generalized Bernoulli numbers, $B_{n,q}$, we use the *n*th reduced Fermatians of index *q* as defined in Shannon [17], namely:

$$\frac{t}{E_q(t) - 1} = \sum_{n=0}^{\infty} B_{n,q} t^n / \underline{q}_n!,$$
(2.1)

where

$$E_{q}(t) = \sum_{n=0}^{\infty} t^{n} / \underline{q}_{n}!, \qquad (2.2)$$

and

$$\underline{q}_{n} = \begin{cases} -q^{n} q & (n < 0) \\ 1 + q + q^{2} + \dots + q^{n-1} & (n > 0) \\ 1 & (n = 0) \end{cases}$$

and

 $\underline{q}_n! = \underline{q}_n \underline{q}_{n-1}!,$ $\underline{1}_n = 1, \, \underline{1}_n! = n!.$

Thus,

so that

$$B_{n,1}=B_n,$$

the ordinary Bernoulli numbers, B_n , for which a form of the Staudt-Clausen theorem can be stated as follows:

$$pB_{n} \equiv \begin{cases} -1 \pmod{p} & (p-1|n) \\ 0 \pmod{p} & (p-1|n) \end{cases}$$
(2.3)

where p is an odd prime (and hence n is even). Our analogue of (2.3) for the Fermatian Bernoulli numbers is in (5.9).

3. GENERALIZED DIFFERENTIAL OPERATORS

Carlitz also studied generalized versions of differential operators in the form of Chak derivatives defined by

$$D_{q}(fx) = \frac{f(qx) - f(x)}{qx - x}.$$
(3.1)

He has also investigated properties associated with the Schur derivative

$$\Delta a_m = (a_{m+1} - a_m) / p^{m+1}, \qquad (3.2)$$

where $\{a_m\}$ is a sequence and p is a prime number [7]. In the same spirit then it is convenient to define formally the Fermatian differential operator

$$D_{x,q} = \underline{q}_n x^{n-1}. \tag{3.3}$$

It follows that

$$D_{x,1}x^n = nx^{n-1}.$$

Some properties of the Fermatian differential operator follow if we define

$$D_{q,x} = (1 - q^n) x^{n-1}, (3.4)$$

and

$$D_{q,x}q=0,$$

so that

$$(1-q)D_{x,q}x^{n} = (1-q^{n})x^{n-1} = D_{q,x}x^{n}.$$
(3.5)

Then

$$D_{x,q}ax^n=aD_{x,q}x^n,$$

where *a* is a constant, and for f(y), a function of *y*,

 $D_{x,q}f(y) = D_{y,q}f(y)D_{x,q}y,$

which reduces to the ordinary 'function of a function rule' when q is unity.

$$D_c f(y) = D_y f(y) D_x y$$

Other properties include

$$D_{xq}y^n = \underline{q}_n y^{n-1} D_{xq} y$$

and

$$D_{xq}(x^{n} + y^{n}) = D_{xq}x^{n} + D_{xq}y^{n}, \qquad (3.6)$$

and, for *u*,*v*, functions of *x*

$$D_{xq}^{n}uv = \sum_{r=0}^{n} \begin{bmatrix} n \\ r \end{bmatrix} D_{xq}^{r}uD_{xq}^{n-r}v,$$

which is analogous to Leibnitz' Theorem for the *n*th derivative of a product of two functions:

$$D^n uv = \sum_{r=0}^n \binom{n}{r} D^r u D^{n-r} v,$$

in which

$$\begin{bmatrix} n \\ r \end{bmatrix} = \frac{\underline{q}_n!}{\underline{q}_r!\underline{q}_{n-r}!}$$

The proof of (3.6) follows readily by induction on *n*. We also define the operator I_{xq} formally by

$$I_{xq}D_{xq}f(x) = f(x). (3.7)$$

and

$$D_{xq}f(x) = I_{xq}^{-1}f(x).$$
 (3.8)

Thus, for $n \neq -1$,

$$I_{xq} = \frac{1-q}{1-q^{n+1}} x^{n+1} + C$$
$$= \frac{x^{n+1}}{\underline{q}_{n+1}} + C,$$

in which C is a constant determined by the initial conditions, and, for n=-1, we have

$$I_{xq}x^{-1} = L_q(x) + C$$

where

$$L_q(1+x) = \sum_{r=0}^{\infty} \frac{(-1)^r x^{r+1}}{q^r \underline{q}_{r+1}}.$$

is an analogue of the logarithmic function.

From (3.5) we have that

$$I_{xq}^{-1}f(x) = (1-q)^{-1}D_{qx}f(x),$$
.

and so we can introduce I_{qx}

$$I_{xq}^{-1}f(x) = (1-q)^{-1}I_{qx}^{-1}f(x).$$

This means that

$$I_{qx}f(x)=D_{qx}^{-1}f(x).$$

and

$$I_{xq}f(x) = (1-q)I_{qx}f(x).$$

When q=1,

$$I_{x1}x^{n} = \frac{x^{n+1}}{n+1} + C, \ n \neq -1,.$$
(3.9)

so that $I_{x1}x^n$ and $\int x^n dx$ differ by a constant only, which can be made zero with suitable limits; that is, the *I* operation is a generalization of integration. One can also define generalizations of the circular and hyperbolic functions in a somewhat similar manner [16].

4. GENERALIZED HURWITZ SERIES

We shall call series of the form

$$\sum_{n=0}^{\infty} a_n t^n / \underline{q}_n!, \tag{4.1}$$

where the a_n are arbitrary integers, a generalized Hurwitz series (GH-series). When q is unity we get an ordinary Hurwitz series [5]. If we consider another GH-series

$$\sum_{n=0}^{\infty} b_n t^n / \underline{q}_n!, \tag{4.2}$$

then the product of (4.1) and (4.2)

$$\sum_{n=0}^{\infty} \left(\sum_{r=0}^{n} a_r b_{n-r} \right) t^n / \underline{q}_n!, \qquad (4.3)$$

is also a GH-series.

The Fontené-Jackson type derivatives and integrals of GH-series are also GH-series, namely

$$D_{iq}\sum_{n=0}^{\infty}a_{n}t^{n}/\underline{q}_{n}!=\sum_{n=0}^{\infty}a_{n+1}t^{n}/\underline{q}_{n}!,$$

and

$$I_{xq} \left| \sum_{n=0}^{\infty} a_n x^n / \underline{q}_n \right|_0^t = \sum_{n=1}^{\infty} a_{n-1} t^n / \underline{q}_n!.$$

For a series without constant term such as

$$H_{1}(t) = \sum_{n=1}^{\infty} a_{n} t^{n} / \underline{q}_{n}!, \qquad (4.4)$$

it follows from

$$H_{1}^{k}(t) / \underline{q}_{k} != I_{xq} D_{xq} H_{1}^{k}(x) / \underline{q}_{k} ! \Big|_{0}^{t}$$
$$= I_{xq} H_{1}^{k-1}(x) D_{xq} H_{1}(x) / \underline{q}_{k-1} ! \Big|_{0}^{t}$$

that $H_1^k(t)/\underline{q}_k!$ is a GH-series for all $k \ge 1$. This result can also be stated in the form

$$H_1^k(t) \equiv 0 \pmod{\underline{q}_k}! \tag{4.5}$$

where by the statement

$$\sum_{n=0}^{\infty} a_n t^n / \underline{q}_n! \equiv \sum_{n=0}^{\infty} b_n t^n / \underline{q}_n! \pmod{\underline{q}_m}$$

is meant that the system of congruences

 $a_n \equiv b_n \pmod{\underline{q}_m}, \ (n = 0, 1, 2, ...,)$ (4.5)

is satisfied. This is equivalent to the assertion

$$\sum_{n=0}^{\infty} a_n t^n / \underline{q}_n! = \sum_{n=0}^{\infty} b_n t^n / \underline{q}_n! + \underline{q}_m H(t)$$
(4.6)

where H(t) is some GH-series. We now consider the class of GH-series

$$f(t) = \sum_{n=1}^{\infty} a_n t^n / \underline{q}_n!, \ (a_1 = 1)$$
(4.7)

and

$$D_{tq} = \sum_{n=0}^{\infty} A_n f^n(t), \ (A_0 = 1)$$
(4.8)

where the A_n are integers. It follows from (4.6) and (4.8) that

$$D_{tq}f(t) \equiv \sum_{n=0}^{m-1} f^n(t) \pmod{\underline{q}_m}$$

since $\underline{q}_m | \underline{q}_m ! | A_k f^k(t), k \ge m$. It follows from (4.7) that f(0)=0, and so

$$D_{0q}f(t) = 1$$

where $D_{oq}^{r} f(t)$ denotes the *r*th generalized Fontené-Jackson derivative of f(t) evaluated at t=0. A result we shall use is

$$D_{0q}^{m} f^{k}(t) \equiv 0 \pmod{\underline{q}_{m}}.$$
 (4.9)

This arises because

$$D_{0q}^{m} f^{k+1}(t) = D_{0q}^{m} f^{k}(t) f(t)$$

= $f(0) D_{0q}^{m} f^{k}(t) + f^{k}(0) D_{0q}^{m} f(t) \pmod{\underline{q}_{m}}.$

Another result to be used later is

 $D_{0q}^{m}f^{m}(t)/\underline{q}_{m} \equiv \underline{q}_{m-1}! \pmod{\underline{q}_{m}}.$ (4.10)

Proof:

$$\begin{split} D_{0q}^{m} f^{m}(t) / \underline{q}_{m} &= D_{0q}^{m-1} \Big(D_{0q} f^{m}(t) \Big) / \underline{q}_{m} \\ &= D_{0q}^{m-1} \Big(f^{m-1}(t) D_{0q} f(t) \Big) \\ &\equiv D_{0q}^{m-1} f^{m-1}(t) \pmod{\underline{q}_{m}} \\ &\equiv D_{0q}^{m-2} \Big(\underline{q}_{m-1} f^{m-2}(t) D_{0q} f(t) \Big) \pmod{\underline{q}_{m}} \\ &\equiv \underline{q}_{m-1} D_{0q}^{m-2} f^{m-2}(t) \pmod{\underline{q}_{m}} \\ &\equiv \underline{q}_{m-1} ! \pmod{\underline{q}_{m}} . \end{split}$$

5. FERMATIAN STAUDT-CLAUSEN THEOREM

If we put

$$f^{m-1}(t) = \sum_{n=m-1}^{\infty} a'_{n} t^{n} / \underline{q}_{n}!, \qquad (5.1)$$

then, since $\underline{q}_m | \underline{q}_m! | f^m(t)$ from (4.5),

$$f^{m-1}(t)f(t) \equiv 0 \pmod{\underline{q}_m},$$

and we get

$$\sum_{r=0}^{n} \begin{bmatrix} n \\ r \end{bmatrix} a_{r} a_{n-r}^{'} \equiv 0 \pmod{\underline{q}_{m}}, \ n \ge \underline{q}_{\underline{m}}.$$
(5.2)

Note that (4.7) and (5.1) imply that

$$a'_{m-1} = q_{m-1}!$$

From the definition of a_n and a'_n , for n=m=1, Congruence (5.2) reduces to

$$\underline{q}_{m+1}a_1a_m'\equiv 0\,(\mathrm{mod}\,\underline{q}_m)$$

so that

$$a'_m \equiv 0 \pmod{q_m} \tag{from [18]}.$$

For n=m+2, (5.2) becomes

$$\underline{q}_{m+2}a_1a_{m+1} + \begin{bmatrix} m+2\\2 \end{bmatrix}a_2a_m \equiv 0 \pmod{\underline{q}_m}$$

which simplifies to

$$\underline{q}_{m+2}a_1a_{m+1} \equiv 0 \pmod{\underline{q}_m}$$

so that

 $a'_{m+1} \equiv 0 \pmod{\underline{q}_m}$

since

 $\underline{q}_{m+2} \equiv 1 + q \,(\mathrm{mod}\,\underline{q}_m) \tag{see [18]}$

and

$$1 = \left(1 + q, \underline{q}_{m}\right) \qquad (q > 0, m > 2).$$

Continuing in this way, we get

$$a'_m \equiv a'_{m+1} \equiv \dots \equiv a'_{2m-3} \equiv 0 \pmod{\underline{q}_m}.$$

For n=2m-1, we get

$$\underline{q}_{2m-1}a_{1}a_{2m-2} + \dots + \begin{bmatrix} 2m-1 \\ m \end{bmatrix} a_{m}a_{m-1} \equiv 0 \pmod{\underline{q}_{m}},$$

which gives

$$\underline{q}_{m-1}a_{2m-2} + a_m a_{m-1} \equiv 0 \pmod{\underline{q}_m}$$
 (from [18])

so that

$$a'_{2m-2} \equiv qa_m a'_{m-1} \equiv qa_m \underline{q}_{m-1}! (\operatorname{mod} \underline{q}_m).$$

From (5.1) we get

$$D_{tq}^{m-1} f^{m-1}(t) = \sum_{n=m-1}^{\infty} a'_{n} t^{n-m+1} / \underline{q}_{n-m+1}!$$

$$\equiv a'_{m-1} + a'_{2m-2} t^{m-1} / \underline{q}_{m-1}! + ...$$

$$\equiv \underline{q}_{m-1}! + q a_{m} \left(a'_{m-1} t^{m-1} / \underline{q}_{m-1}! + ... \right)$$

$$\equiv \underline{q}_{m-1}! + q a_{m} f^{m-1}(t) \pmod{\underline{q}_{m}}.$$
(5.3)

A solution of (5.3) is

$$f^{m-1}(t) \equiv \underline{q}_{m-1}! \sum_{n=1}^{\infty} (qa_m)^{n-1} \frac{t^{n(m-1)}}{\underline{q}_{n(m-1)}!} \, (\text{mod}\,\underline{q}_m).$$
(5.4)

This can be verified as follows

$$D_{0q}^{m-1} f^{m-1}(t) \equiv \underline{q}_{m-1}! \sum_{n=1}^{\infty} (qa_m)^{n-1} \frac{t^{(n-1)(m-1)}}{\underline{q}_{(n-1)(m-1)}!}$$
$$\equiv \underline{q}_{m-1}! \sum_{n=0}^{\infty} (qa_m)^n \frac{t^{n(m-1)}}{\underline{q}_{n(m-1)}!}$$
$$\equiv \underline{q}_{m-1}! + qa_m f^{m-1}(t) \pmod{\underline{q}_m}.$$

Now let

$$\lambda(t) = \sum_{n=1}^{\infty} e_n f^n(t) / \underline{q}_n! \qquad (e_1 = 1)$$

denote the inverse of f(t), so that

$$t = \sum_{n=1}^{\infty} e_n f^n(t) / \underline{q}_n!.$$
 (5.5)

Differentiating (5.5) we get

$$1 = \sum_{n=0}^{\infty} e_{n+1} \frac{f^{n}(t)}{\underline{q}_{n}!} D_{tq} f(t)$$

Comparison with (4.8) yields

$$e_{n+1} \equiv 0 \; (\operatorname{mod} \underline{q}_n!). \tag{5.6}$$

(5.5) can be re-written as

$$t/f(t) = \sum_{n=0}^{\infty} e_{n+1} f^n(t) / \underline{q}_{n+1}!.$$
(5.7)

It follows from (4.5) and (5.6) that $e_{n+1}f^n(t)/\underline{q}_{n+1}!$ is a GH-series and the coefficients of $f^n(t)$ are multiples of $\underline{q}_{n+1}!$. At this stage with ordinary integers one can proceed by using the fact that n! is a multiple of n+1 except when n+1 is a prime or n=3. The situation for $\underline{q}_n!$ is more complex: from [18] we know that

$$\underline{q}_{n+1} = \underline{q}_m \left(\underline{q}^m \right)_r$$

where n+1=mr. So

$$\underline{q}_{n+1} \mid \underline{q}_n! = \prod_{i=0}^{n-1} \underline{q}_{n-1}.$$

Instead of investigating this further, we define β_n by

$$t/f(t) = \sum_{n=0}^{\infty} \beta_n t^n / \underline{q}_n!,$$

And we know from (5.4) and (5.5) that

$$t/f(t) \equiv \sum_{n=0}^{\infty} \frac{e_{n+1}}{\underline{q}_{n+1}} \sum_{r=1}^{\infty} (a_{n+1})^{r-1} \frac{t^m}{\underline{q}_m!} (\operatorname{mod} \underline{q}_{n+1})$$
$$\equiv \sum_{m=1}^{\infty} \frac{e_m}{\underline{q}_m} \sum_{r=1}^{\infty} (qa_m)^{r-1} \frac{t^{r(m-1)}}{\underline{q}_m!} (\operatorname{mod} \underline{q}_m).$$

Thus, from the definition of β_n , we get for *z*>0, *m*>2,

$$\underline{q}_{m}\beta_{n} \equiv \begin{cases} e_{m}(qa_{m})^{(n/(m-1)-1)} (\operatorname{mod} \underline{q}_{m}) & (m-1 \mid n), \\ 0 (\operatorname{mod} \underline{q}_{m}) & (m-1 \nmid n). \end{cases}$$
(5.8)

We next show that

 $a_m + e_m \equiv 0 \pmod{\underline{q}_m}.$

From (4.9) and (5.5)

$$0 = \sum_{n=1}^{m} e_n D_{0q}^m f^n(t) / \underline{q}_n!,$$

which becomes

This simplifies to

 $a_m + e_m \underline{q}_{m-1}! / \underline{q}_{m-1}! \equiv 0 \pmod{\underline{q}_m}$

from (4.10) and because

 $D_{0q}^{m}f(t) \equiv a_{m} \,(\mathrm{mod}\,\underline{q}_{m}).$

Thus,

$$a_m + e_m \equiv 0 \; (\mathrm{mod} \, \underline{q}_m),$$

and so, (5.8) becomes

$$\underline{q}_{m}\beta_{n} \equiv \begin{cases} -q^{(n/(m-1)-1)}a_{m}^{n/(m-1)} \pmod{\underline{q}_{m}} & (m-1 \mid n), \\ 0 & (m-1 \nmid n), \end{cases}$$

for *m*>2, *q*>0. For

$$=\sum_{n=1}^{\infty}t^{n}/\underline{q}_{n}!$$

 $f(t) = E_a(t) - 1$

(see (2.1) and (2.2)

$$a_{n} = 1 \text{ and } \beta_{n} = B_{n,q}. \text{ Thus,}$$

$$\underline{q}_{m}B_{n,q} \equiv \begin{cases} -q^{(n/(m-1)-1)} \pmod{q}_{m} & (m-1|n), \\ 0 & (m-1|n). \end{cases}$$
(5.9)

for *m*>2, *q*>0.

When m=p, a prime, and q=1, this reduces to (2.3). (5.9) is not a necessary and sufficient condition for Fermatian Bernoulli numbers though, because no conditions were imposed on the allowable values of \underline{q}_m . (5.9) is an analogue of the Staudt-Clausen Theorem and it exists for the Fermatian Bernoulli numbers $B_{n,q}$.

6. CONCLUSION

The foregoing does not exhaust possibilities for generalizing the Bernoulli numbers and the Staudt-Clausen Theorem. Vandiver [20], for instance, defined Bernoulli numbers of the first order by the umbral equality

$$b_n(m,k) = (mb+k)^n : B_n = b_n(0,k), \tag{6.1}$$

so that Vandiver's form of the Staudt-Clausen Theorem was that for *n* even,

$$b_n(m,k) = A_n - \sum_{i=1}^{n-1} \frac{1}{p_i},$$
(6.2)

where the ps are distinct primes, relatively prime to non-zero m and such that

$$n \equiv 0 \pmod{p_i - 1},$$

and A_n is some integer. Sharma [19] and Carlitz [1,2,8,9,10,11] have also studied analogues of the Staudt-Clausen type. It is of interest to note that Carlitz speculated about the existence of a theorem of the Staudt-Clausen type for Bernoulli numbers of order k defined by

$$\left(t/(e^{t}-1)\right)^{k} = \sum_{n=0}^{\infty} B_{n}^{(k)} t^{n} / n!, \qquad (6.3)$$

and he showed that for $k = p_r$ and

$$n = p^{r-1}(s(p-1)+1) - 1$$

a form exists, namely,

$$p^r B_n^{\frac{p}{r}} \equiv (-1)^r \pmod{p}.$$

Furthermore,

$$B_{p+2}^{p+1} \equiv 0 \pmod{\underline{p}_4}.$$

Another possibility for further research is to study the reducibility of the generalized Bernoulli polynomials [6]. Carlitz has used the Staudt-Clausen Theorem and Lagrange's Interpolation Formula to show that the polynomial in x, $pB_{p-1}(x)/x$ is an Eisenstein polynomial, and hence irreducible. This is also suggests the formal consideration of the *p*th Fermatian of index x, \underline{x}_p , as the irreducible cyclotomic polynomial, $\phi_p(x)$:

$$\underline{x}_{p} = \phi_{p}(x) = 1 + x + x^{2} + \dots + x^{p-1},$$

which satisfies the hypotheses of the Eisenstein criterion.

REFERENCES

1. L. Carlitz. "An Analogue of the von Staudt-Clausen Theorem." *Duke Mathematical Journal.* **3** (1937): 503-517.

- L. Carlitz. "An Analogue of the Staudt-Clausen Theorem." Duke Mathematical Journal. 7 (1941): 62-67.
- 3. L. Carlitz. "The Coefficients of the Reciprocal of a Series." Duke Mathematical Journal. 8 (1941): 689-700.
- 4. L. Carlitz. "q-Bernoulli Numbers and Polynomials." *Duke Mathematical Journal*. **15** (1948): 987-1000.
- 5. L. Carlitz. "Some Properties of Hurwitz Series." *Duke Mathematical Journal.* 16 (1949): 285-295.
- 6. L. Carlitz. "A Note on Irreducibility of the Bernoulli and Euler Polynomials." *Duke Mathematical Journal.* **19** (1952): 475-481.
- 7. L. Carlitz. "The Schur Derivative of a Polynomial." *Proceedings of the Glasgow Mathematical Association*. **1** (1953): 159-163.
- 8. L. Carlitz. "A Degenerate Staudt-Clausen Theorem." *Archiv der Mathematik.* 7 (1956): 28-33.
- 9. L. Carlitz. "A Note on the Staudt-Clausen Theorem." *American Mathematical Monthly.* **64** (1957): 186-188.
- 10. L. Carlitz. "Criteria for Kummer's Congruences." Acta Arithmetica. 6 (1960): 375-390.
- 11. L. Carlitz. "The Staudt-Clausen Theorem." *Mathematics Magazine*. **35** (1961): 131-146.
- 12. L. Carlitz. "Some Arithmetic Sums Associated with the Greatest Integer Function." *Archiv der Mathematik.* **12** (1961): 34-42.
- 13. G. Fontené. "Generalization d'une formule connue." *Nouv. Ann. Math.* **15** (1915): 112.
- 14. A.F. Horadam & A.G. Shannon. "Ward's Staudt-Clausen Problem." *Mathematica Scandinavica*. **39** (1976): 239-250.
- 15. F. H. Jackson. "q-difference Equations." American Journal of Mathematics. 32 (1910): 305-314.
- 16. A. G. Shannon. "Arbitrary Order Circular Functions: An Extension of Results of Glaisher and Lucas." *Journal of Natural Science & Mathematics*. **19** (1979): 71-76.
- 17. A. G. Shannon. "Some Fermatian Special Functions." Note on Number Theory & Discrete Mathematics. 9 (2003): 73-82.
- 18. A. G. Shannon. "Some Properties of Fermatian Numbers." *Note on Number Theory & Discrete Mathematics*: **10** (2004), 2: 25-33.
- 19. A. Sharma. "q-Bernoulli and Euler Numbers of Higher Order." .Duke Mathematical Journal. 25 (1958): 343-353.
- 20. H. S. Vandiver. "Simple Explicit Expressions for Generalized Bernoulli Numbers." *Duke Mathematical Journal.* 8 (1941): 575-584.
- 21. M. Ward. "A Calculus of Sequences." American Journal of Mathematics. 58 (1936): 255-266.

AMS Classification Numbers: 11B68, 11A07, 11B39