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ABSTRACT 
This paper looks at the Staudt-Clausen theorem within the framework of various 
generalization of the Bernoulli numbers.  The historical background to the prob-
lem is reviewed, and a solution to a problem of Morgan Ward is put forward. 
Generalized Hurwitz series are utilised in the development of the results. 

 
1. INTRODUCTION 

Morgan Ward [21] once posed the problem whether a suitable definition for generalized 
Bernoulli numbers could be framed so that a generalized Staudt-Clausen Theorem might 
exist for them within the framework of the Fontené-Jackson calculus [6,8]. 
 
Carlitz [4] outlined a partial generalization of the Staudt-Clausen theorem with the Fon-
tené-Jackson operators.  The purpose of this paper is to show that Ward’s problem can be 
solved with the adaptation of a method used by Carlitz for the ordinary Staudt-Clausen 
theorem [9] and for coefficients of more general series [11]. 
 

2. DEFINITIONS 
To define these generalized Bernoulli numbers, qnB , , we use the nth reduced Fermatians 
of index q as defined in Shannon [17], namely: 
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the ordinary Bernoulli numbers, ,nB  for which a form of the Staudt-Clausen theorem can 
be stated as follows: 
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where p is an odd prime (and hence n is even). Our analogue of (2.3) for the Fermatian 
Bernoulli numbers is in (5.9).  

 
3. GENERALIZED DIFFERENTIAL OPERATORS 

Carlitz also studied generalized versions of differential operators in the form of Chak de-
rivatives defined by 
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He has also investigated properties associated with the Schur derivative 
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where { }ma  is a sequence and p is a prime number [7]. In the same spirit then it is con-
venient to define formally the Fermatian differential operator 
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Some properties of the Fermatian differential operator follow if we define 
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where a is a constant, and for f(y), a function of y, 
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which reduces to the ordinary ‘function of a function rule’ when q is unity.   
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Other properties include 
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which is analogous to Leibnitz’ Theorem for the nth derivative of a product of two func-
tions: 
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The proof of (3.6) follows readily by induction on n. We also define the operator xqI  
formally by 
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in which C is a constant determined by the initial conditions, and, for n=−1, we have 
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is an analogue of the logarithmic function. 
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From (3.5) we have that 
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and so we can introduce qxI  
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so that n

x xI 1  and ∫ dxxn  differ by a constant only, which can be made zero with suitable 
limits; that is, the I operation is a generalization of integration.  One can also define gen-
eralizations of the circular and hyperbolic functions in a somewhat similar manner [16]. 
 

 
4. GENERALIZED HURWITZ SERIES 

We shall call series of the form 
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where the na are arbitrary integers, a generalized Hurwitz series (GH-series).  When q is 
unity we get an ordinary Hurwitz series [5].  If we consider another GH-series 
 

∑
∞

=0
,!/

n
n

n
n qtb  (4.2)

 
then the product of (4.1) and (4.2) 
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is also a GH-series. 
The Fontené-Jackson type derivatives and integrals of GH-series are also GH-series, 
namely 
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For a series without constant term such as 
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that !/)(1 k

k qtH  is a GH-series for all .1≥k   This result can also be stated in the form 
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is meant that the system of congruences 
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is satisfied.  This is equivalent to the assertion  
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where H(t) is some GH-series. 
We now consider the class of GH-series 
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where the nA  are integers.  It follows from (4.6) and (4.8) that 
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since .),(!|| mktfAqq k

kmm
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where )(tfDr

oq  denotes the rth generalized Fontené-Jackson derivative of f(t) evaluated 
at t=0. A result we shall use is  
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Another result to be used later is 
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5. FERMATIAN STAUDT-CLAUSEN THEOREM 

If we put 
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Note that (4.7) and (5.1) imply that 
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From the definition of na and '
na ,  for n=m=1, Congruence (5.2) reduces to 
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A solution of (5.3) is 
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This can be verified as follows 
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for m>2, q>0. 
When m=p, a prime, and q=1, this reduces to (2.3).  (5.9) is not a necessary and sufficient 
condition for Fermatian Bernoulli numbers though, because no conditions were imposed 
on the allowable values of 

m
q .  (5.9) is an analogue of the Staudt-Clausen Theorem and it 

exists for the Fermatian Bernoulli numbers qnB , . 
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6. CONCLUSION 

The foregoing does not exhaust possibilities for generalizing the Bernoulli numbers and 
the Staudt-Clausen Theorem.  Vandiver [20], for instance, defined Bernoulli numbers of 
the first order by the umbral equality 
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where the ps are distinct primes, relatively prime to non-zero m and such that  
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and nA  is some integer.  Sharma [19] and Carlitz [1,2,8,9,10,11] have also studied ana-
logues of the Staudt-Clausen type. It is of interest to note that Carlitz speculated about the 
existence of a theorem of the Staudt-Clausen type for Bernoulli numbers of order k de-
fined by 
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Another possibility for further research is to study the reducibility of the generalized Ber-
noulli polynomials [6].  Carlitz has used the Staudt-Clausen Theorem and Lagrange’s In-
terpolation Formula to show that the polynomial in xxpBx p /)(, 1−  is an Eisenstein poly-
nomial, and hence irreducible.  This is also suggests the formal consideration of the pth 
Fermatian of index ,x px , as the irreducible cyclotomic polynomial, pφ (x): 
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which satisfies the hypotheses of the Eisenstein criterion. 
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