Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 10, 2004, Number 1, Page 24
Download full paper: PDF, 397 Kb
Details
Authors and affiliations
Krassimir T. Atanassov
CLBME – Bulg. Acad. of Sci.
PO Box 12, Sofia 1113, Bulgaria
Abstract
There are some formulae for the n-th prime number as well as for function π(n), determining the number of the prime numbers smaller than n (see, e.g. [1]). In [2] we introduced three new formulae for π(n) and a new formula for the n-th prime number pn. Now we shall introduce another — simpler formula for π(n) and pn, following [2].
References
- Ribenboim, P. The New Number of Prime Number Records. Springer, New York, 1995.
- Atanassov, K. A new formula for the n-th prime number Comptes Rendus de l’Academie Bulgare des Sciences, Vol. 54, 2001, No. 7, 5-6.
- Atanassov K., Some assertions on φ and σ functions, Bulletin of Number Theory and Related Topics, Vol. XI (1987), No. 1, 50-63
Related papers
- Atanassov, K. (2009). A remark on an arithmetic function. Part 3. Notes on Number Theory and Discrete Mathematics, 15(4), 23-27.
- Atanassov, K. T. (2021). Formulas for the n-th prime number. Notes on Number Theory and Discrete Mathematics, 27(4), 129-139.
Cite this paper
Atanassov, K. T. (2004). On a new formula for the n-th prime number. Notes on Number Theory and Discrete Mathematics, 10(1), 24.