A set-method for representation of the solutions of some Diophantine equations and some of its applications

Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 2, 1996, Number 4, Pages 21—26
Download full paper: PDF, 329 Kb

Details

Authors and affiliations

Krassimir T. Atanassov
Math. Research Lab., P.O.Box 12,
Sofia – 1113, Bulgaria

References

  1. Nagel T., Introduction to number theory, John Wiley & Sons, Inc., New York.
  2. Atanassov K., One extremal problem. 2. , Bull, of Number Theory and Related Topics Vol. IN (1985), No. 2. 11-13.
  3. Atanassov K., Vasilev M., An extremal problem. 3. Bull. of Number Theory and Related Topics Vol. X (1986), No. 1, 19-25.
  4. Atanassov E. , On the solutions of tx = ty + tz, Bull, of Number Theory and Related Topics, Vol. XVI, 1992, 57-59.
  5. Kudrevatov G., A book of problems in number theory, Nauka (Moscow), 1970 (in Russian).
  6. Atanassov K., On one problem for a rectangular parallelepiped with integer sides and its modifications, Proc. of Sci. Session of VIVU W. Tarnovo, 1988, 146-150 (in Bulgarian)
  7. Lal, M., Bludon, W., Solutions of Diophantine equations x2 + y2 = l2, y2 + z2 = m2, z2 + x2 = n2. Math. Comput., 1966, Vol. 20, No 93, 144-147.
  8. Colman W., Some observations on the classical cuboid and its parametric solutions, The Fib. Quar., 1988, Vol. 26, No. 3, 338-343.
  9. Chiao, K., On Diophantine equation n = x2 + y2z2, x2n, y2n, z2n. Acta Scient. Natur., Univ. Szechuan, 1959, No. 6, 1-10 (in Chinese)
  10. Bradis V., Sicakov A.. Despa triunghiurile heronice,. Gaz. mat. si. fiz. 1969, All, No. 6, 325-334.
  11. Battaglia A., Formule parametriche per triangoii heroniami, Archimede, 1959, Vol. 11, No. 3, 163-167 .
  12. Atanassov K., On Heronus triangular problem and its modifications, Proc. of Sci. Session of VIVU, W. Tarnovo, 1988,  151-155.
  13. Popovich K., Heronus triangulars, Rev. math, pures et appl., Vol. 7, 1962, No. 3, 439-457.

Related papers

Cite this paper

Atanassov, K. T. (1996). A set-method for representation of the solutions of some Diophantine equations and some of its applications. Notes on Number Theory and Discrete Mathematics, 2(4), 21-26.

Comments are closed.