Gabriele Di Pietro
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 3, Pages 580–586
DOI: 10.7546/nntdm.2024.30.3.580-586
Full paper (PDF, 195 Kb)
Details
Authors and affiliations
Gabriele Di Pietro
Via delle Ville, 18, 64026, Roseto degli Abruzzi (TE), Italy
Abstract
This paper provides a better approximation of the functions presented in the article “Numerical Analysis Approach to Twin Primes Conjecture” (see [3]). The new estimates highlight the approximations used in the previous article and the validity of Theorems 1 and 2 through the use of the false hypothesis based on the distribution of primes punctually following the Logarithmic Integral (see [4] and [7], pp. 174–176) will be re-evaluated.
Keywords
- Numerical analysis
- Number theory
- Sieves
2020 Mathematics Subject Classification
- 11N35
References
- De la Vallée Poussin, C. J. (1896). Recherches analytiques la théorie des nombres premiers. Annales de la Société scientifique de Bruxelles, 20, 183–256.
- Derbyshire, J. (2004). Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin.
- Di Pietro, G. (2021). Numerical analysis approach to twin primes conjecture. Notes on Number Theory and Discrete Mathematics, 27(3), 175–183.
- Gauss, C. F. (1863). Werke, Band 10, Teil I. p. 10.
- Hadamard, J. (1896). Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques. Bulletin de la Societe Mathematique de France, 24, 199–220.
- Hardy, G. H., & Wright, E. M. (1979). An Introduction to the Theory of Numbers (5th ed.). Oxford Science Publications, Oxford, England: Clarendon Press, pp. 354–358.
- Havil, J., & Dyson, F. (2003). Problems with Primes. In Gamma: Exploring Euler’s Constant. Princeton; Oxford: Princeton University Press, pp. 163–188.
- Rosser, J. B., & Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics, 6(1), 64–94.
- Selberg, A. (1949). An elementary proof of the Prime-Number Theorem. Annals of Mathematics, 50(2), 305–313
Manuscript history
- Received: 27 February 2024
- Revised: 3 October 2024
- Accepted: 9 October 2024
- Online First: 11 October 2024
Copyright information
Ⓒ 2024 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Di Pietro, G. (2021). Numerical analysis approach to twin primes conjecture. Notes on Number Theory and Discrete Mathematics, 27(3), 175-183.
Cite this paper
Di Pietro, G. (2024). New estimations for numerical analysis approach to twin primes conjecture. Notes on Number Theory and Discrete Mathematics, 30(3), 580-586, DOI: 10.7546/nntdm.2024.30.3.580-586.