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Abstract: This paper provides a better approximation of the functions presented in the article
“Numerical Analysis Approach to Twin Primes Conjecture” (see [3]). The new estimates highlight
the approximations used in the previous article and the validity of Theorems 1 and 2 through
the use of the false hypothesis based on the distribution of primes punctually following the
Logarithmic Integral Li(x) (see [4] and [7], pp. 174–176) will be re-evaluated.
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1 Introduction

This paper represents a follow-up of the previous article “Numerical Analysis Approach to Twin
Primes Conjecture” (see [3]) in which the sieve of Eratosthenes was modified to obtain the twin
primes counting function called Υ(x). In order to avoid burdening the discussion, a summary of
the main notations and reasonings will be carried out, focusing on the new estimations and the
validity of the theorems on the basis of the latest modifications.

First of all, the sieve of Eratosthenes should be considered until a certain number x. For the
sake of simplicity, consider a table divided in two specific parts, namely the eliminators zone from
1 to

√
x and the would-be twin primes zone from

√
x to x. The numbers of the 6k+1 and 6k− 1
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forms will also be called would-be twin primes, then the amount of couples (6k + 1, 6k − 1) in
the would-be twin prime zone will be counted. Through this calculation, the obtained result is⌊x

6

⌋
−
⌊√

x

6

⌋
, (1)

from which the amount of the twin prime numbers deleted from the would-be twin prime zone
will be deducted.

At this point, consider

K =

⌊
x

3y

⌋
−
⌊√

x

3y

⌋
, (2)

where y represents a number in the eliminators zone and K is the amount of the would-be twin
prime numbers deleted by y. If we assign to y the prime numbers p in the eliminators zone
(5 ≤ p ≤

√
x), we shall obtain∑

p∈[5,
√
x]

K =
∑

p∈[5,
√
x]

⌊
x

3p

⌋
−
⌊√

x

3p

⌋
, (3)

which represents the total number of deletions within the would-be twin prime zone. The set
of these deletions contains the repetitions due to the fact that a would-be prime number may be
deleted by more eliminators, so there is a need for a function which shall take into account the
various factors of a number x in order to remove the repetitions from (3).

In literature it is called ω(x) (Hardy and Wright in [6], p. 354) and is defined as the function
counting the distinct prime factors of a x number. Here we can define the amount for which the
deletions of (3) should be divided

L =
1

#Z

∑
z∈[1,x]

ω(z), (4)

where z is an integer number of the form 6k+1 or 6k−1 in the [1, x] Sieve of Eratosthenes table;
Z is the set of integer numbers z and #Z is its cardinality.

The function (4) encloses the parity problem (see [9]) introduced by Selberg in 1949 and in
order to bypass it, we should rely on the result

1

L

∑
p∈[5,

√
x]

K =
⌊x
3

⌋
−
⌊√

x

3

⌋
−
[
π(x)− π(

√
x)
]
, (5)

which does not need any approximation of ω(x), but rises the problem of re-adding within the
zone of deletions all that ones that do not distinguish the would-be prime of the forms 6k + 1

and 6k − 1 that is to say the ones that will delete both the would-be prime and its twin. It can be
defined as

T =
∑

p∈[
√
x,x]

⌊
dist(p)− 3

6

⌋
, (6)

where dist(p) represents the distance function between p (prime) and the following prime number.
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However, using the false hypothesis that the average distance between two consecutive prime
numbers may be ln(x),

T̃ =
∑

p∈[
√
x,x]

⌊
ln(p)− 3

6

⌋
(7)

can be defined as an approximation of (6). The choice of such hypothesis derives from the
observation of the logarithmic integral function Li(x) (see [2], pp. 116–117) introduced by Gauss:

Li(x) =
x

lnx

∞∑
k=0

k!

(lnx)k
, (8)

in which the development in its first order is x
ln(x)

. The set of these three functions allows us to
define the twin prime couples counting function

Υ(x) =
⌊x
6

⌋
−
⌊√

x

6

⌋
− 1

L

∑
p∈[5,

√
x]

K + T (9)

and its approximation

Υ̃(x) =
⌊x
6

⌋
−
⌊√

x

6

⌋
− 1

L̃

∑
p∈[5,

√
x]

K̃ + T̃ , (10)

where
1

L̃

∑
p∈[5,

√
x]

K̃ =
⌊x
3

⌋
−
⌊√

x

3

⌋
−
(

x

lnx
−

√
x

ln
√
x

)
(11)

by approximating (5) with the prime number theorem (see [1, 5]).
In 1962, Rosser and Schoenfeld published “Approximate formulas for some functions of

prime numbers” (see [8]). This paper will rely on their results in order to recalculate (7) and it is
structured as follows: Section 2 is used to compare approximations of (7) and its new version; in
Section 3 a new version of (10) may be obtained and its monotonicity may be studied; Section 4 is
characterized by an extension of the results in Section 3 to any distance of primes k ln(x), where
0 < k < 1.

2 A better estimate for T̃

Relying on Rosser and Schoenfeld’s introduction in [8], f(p) can be defined as the following
function:

f : P ⊂ N → R, (12)

where P represents the set of prime numbers. At this point, we can consider the logarithm product
of primes which are less than a natural number x

θ(x) = ln

(∏
p≤x

p

)
=
∑
p≤x

ln(p), (13)
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or the function counting the amount of primes which are less than x

π(x) =
∑
p≤x

1. (14)

Bearing in mind the classic definition of Gaussian Li(x) and its property of representing the
average distribution of primes, it is natural to approximate∑

p≤x

f(p) ≈
∫ x

2

f(y)

ln y
dy, (15)

which, if applied to (13), is

θ(x) =
∑
p≤x

ln(p) ≈
∫ x

2

dy ≈ x, (16)

while if applied to (14), is

π(x) =
∑
p≤x

1 ≈
∫ x

2

1

ln(y)
dy, (17)

as clearly demonstrated by De la Vallée Poussin in [1].
The Theorem 4 in [8], p. 70, provides a lower bound for (13):

x

(
1− 1

2 ln(x)

)
< θ(x) =

∑
p≤x

ln(p), x ≥ 563 (18)

that will be used for the following calculations. In fact, by developing (7) through the prime
number theorem, one has

T̃ =
∑

p∈[
√
x,x]

⌊
ln(p)

6

⌋
−
⌊
3

6

(
x

ln(x)
−

√
x

ln
√
x

)⌋
, (19)

from which, by using the inequality in (18), the result is∑
p∈[

√
x,x]

ln(p)

6
∼ x

6

(
1− 1

2 ln(x)

)
−

√
x

6

(
1− 1

2 ln(
√
x)

)
. (20)

So the function in (19) may be approximated by the quantity that will be called S̃ in order to
differentiate it from T̃ , avoiding any duplication of notation:

T̃ ≈ S̃ =
2x ln(x)− x− 2

√
x ln(x) + 2

√
x

12 lnx
− 3

6

(
x

ln(x)
−

√
x

ln
√
x

)
, (21)

that is to say

S̃ =
2x ln(x)− 2

√
x ln(x)− 7x+ 14

√
x

12 lnx
. (22)

The latter represents a better approximation of the function (19) so it is logical to suppose that
any other chosen approximation may have S̃ as an upper bound. It can be verified, for example,
for the T̃ approximation in [3]:

T̃ =
ln(x)

6

(
x

ln(x)
−

√
x

ln
√
x

)
− 5.5

6

(
x

ln(x)
−

√
x

ln
√
x

)
(23)
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due to the inequality
3

6
<

5.5

6
. (24)

In fact, one has

ln(x)− 5.5

6

(
x

ln(x)
−

√
x

ln
√
x

)
=

2x ln(x)− 4
√
x ln(x)− 11x+ 22

√
x

12 lnx
(25)

and the difference between (22) and (25) is

2x ln(x)− 2
√
x ln(x)− 7x+ 14

√
x− 2x ln(x) + 4

√
x ln(x) + 11x− 22

√
x

12 lnx
, (26)

hence
2
√
x ln(x) + 4x− 8

√
x

12 lnx
> 0 (27)

for any x ≥ 563 as stated in (18), proving

S̃ >
ln(x)− 5.5

6

(
x

ln(x)
−

√
x

ln
√
x

)
(28)

for any x ≥ 563.

3 A new approximation of twin prime couples function

On the basis of the latest considerations, it may be interesting to test the twin prime couples
counting function defined as (10) through the use of the new approximations. Instead of
considering the natural S̃, assign the following limit value:

T̃min =
2x ln(x)− x− 2

√
x ln(x) + 2

√
x

12 lnx
− 5.5

6

(
x

ln(x)
−

√
x

ln
√
x

)
, (29)

which represents the minimum value of approximation of (19) in view of the above. At this point,
the approximation of Υ(x) may be re-evaluated and the twin prime couples counting function is
the following:

Υ̃(x) =
⌊x
6

⌋
−
⌊√

x

6

⌋
− 1

L̃

∑
ỹ∈π(

√
x)

K̃ + T̃min, (30)

where
1

L̃

∑
p∈[5,

√
x]

K̃ =
⌊x
3

⌋
−
⌊√

x

3

⌋
−
(

x

lnx
−

√
x

ln
√
x

)
, (31)

Theorem 1. Supposing a punctually Li(x) function of first order, the Υ̃(x) function, defined
by (29)–(31), is identically equal to zero. This function is an approximation of Υ(x), so the
numerical twin prime couples counting function is Υ(x) > Υ̃(x) = 0 for any x ≥ 563.

Proof.
√
x− x

6
+

2x ln(x)− x− 2
√
x ln(x) + 2

√
x

12 lnx
+

0.5

6

(
x

ln(x)
−

√
x

ln
√
x

)
= 0,

2
√
x ln(x)− 2x ln(x) + 2x ln(x)− x− 2

√
x ln(x) + 2

√
x

12 lnx
+

0.5

6

(
x

ln(x)
−

√
x

ln
√
x

)
= 0,

584



using the properties of logarithms

2
√
x− x

12 lnx
+

0.5

6

(
x

lnx
− 2

√
x

lnx

)
= 0,

2
√
x− x+ x− 2

√
x

12 lnx
= 0,

simplifying
0

12 lnx
= 0.

The assertion Υ(x) > Υ̃(x) = 0 for any x ≥ 563 is a consequence of the previous approximations
in Section 2, proving the theorem.

Obviously, choosing values between 3

6
and 5.5

6
in (24), the function Υ̃(x) will be greater than

zero further justifying Theorem 1 proof.

4 Extension to upper orders of Li(x)

By calling the Logarithmic Integral in (8), it may be observed that the distribution of primes x

ln(x)

is simply its first order expansion. In addition, as in Section 6 of [3], for any 0 < k < 1, we may
consider π(x) ∼ 1

k

x

lnx
∼ Li(x) and assume as a false hypothesis that k ln(x) may be the average

distance between twin primes.
Consequently, we wonder if the inequality in (18) is still valid through the introduction of

the new average but in order to establish that we need (12) and (17) to develop (15) by using the
Stieltjes integral: ∑

p≤x

f(p) =

∫ x

2−
f(y)d(π(y)). (32)

Integration by parts provides∑
p≤x

f(p) = f(x)π(x)−
∫ x

2

f ′(y)π(y)dy, (33)

so the approximations can be applied as follows:∑
p≤x

k ln(p) =
kx ln(x)

k ln(x)
−
∫ x

2

k

y

y

k ln(y)
dy = x−

∫ x

2

1

ln(y)
dy ∼ x

(
1− 1

ln(x)

)
(34)

as the approximation in (17) has been used in the last stage. Now, following the proof of
Theorem 4 in [8],

x

(
1− 1

2 ln(x)

)
<
∑
p≤x

k ln(p) (35)

is valid for each average distance k ln(x).

Theorem 2. Using Theorem 1 with 1

k
· x

ln(x)
as a distribution of primes and k ln(x) as an average

distance between twin primes, then the approximating function Υ̃(x) is positive where x > 4 and
0 < k < 1 .
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Proof. On the basis of the previous demonstration we obtain
√
x− x

6
+

2x ln(x)− x− 2
√
x ln(x) + 2

√
x

12 lnx
+

0.5

6

1

k

(
x

lnx
− 2

√
x

lnx

)
> 0,

from which

2
√
x ln(x)− 2x ln(x) + 2x ln(x)− x− 2

√
x ln(x) + 2

√
x+ x

k
− 2

√
x

k

12 lnx
> 0,

and so
x
(
1
k
− 1
)
− 2

√
x
(
1
k
− 1
)

12 lnx
> 0,

where the numerator is greater than zero for any x > 4 and the denominator when x > 1 ensuring
that Υ̃(x) is increasingly monotonous for any x > 4 where 0 < k < 1.

Obviously, for previous approximations, Υ(x) > Υ̃(x) ≥ 563 and, in order to prove that there
are infinite twin prime couples supposing a punctually Li(x) function distribution of primes, it is
sufficient to assume for any 0 < k < 1 that

1

k
=

∞∑
t=0

t!

(lnx)t
.
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