Linear recurrence sequence associated to rays of negatively extended Pascal triangle

Hacène Belbachir, Abdelkader Bouyakoub and Fariza Krim
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 1, Pages 129–142
DOI: 10.7546/nntdm.2022.28.1.129-142
Full paper (PDF, 247 Kb)

Details

Authors and affiliations

Hacène Belbachir
USTHB, Faculty of Mathematics, RECITS Laboratory,
Po. Box 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria

Abdelkader Bouyakoub
Oran1 University, Faculty of Sciences, GEAN Laboratory
Po. Box 1524, El Menaouer, 31000 Es Senia, Oran, Algeria

Fariza Krim
USTHB, Faculty of Mathematics, RECITS Laboratory,
Po. Box 32 El Alia, 16111, Algiers, Algeria
Oran1 University, Faculty of Sciences, GEAN Laboratory
Po. Box 1524, El Menaouer, 31000 Es Senia, Oran, Algeria

Abstract

We consider the extension of generalized arithmetic triangle to negative values of rows and we describe the recurrence relation associated to the sum of diagonal elements laying along finite rays. We also give the corresponding generating function. We conclude by an application to Fibonacci numbers and Morgan-Voyce polynomials with negative subscripts.

Keywords

  • Binomial coefficient
  • Linear recurrence
  • Combinatorial identities
  • Arithmetic triangle

2020 Mathematics Subject Classification

  • 11B37
  • 05A10
  • 11B65
  • 11B39
  • 05A15

References

  1. Ait-Amrane, L., Belbachir, H., & Betina, K. (2016). Periods of Morgan-Voyce sequences and elliptic curves. Mathematica Slovaca, 66(6), 1267–1284.
  2. Amrouche, S., Belbachir, H., & Ramirez, J. L. (2019). Unimodality, linear recurrences and combinatorial properties associated to rays in the generalized Delannoy matrix. Journal of Difference Equations and Applications, 25(8), 1200–1215.
  3. Andre-Jeannin, R. (1994). A Generalization of Morgan-Voyce Polynomials. The Fibonacci Quarterly, 32(3), 228–31.
  4. Atanassov, K. (2015). On Some Pascal’s Like Triangles. School of Information Technology of Polish Academy of Sciences, Warsaw.
  5. Belbachir, H., Komatsu, T., & Szalay, L. (2010). Characterization of linear recurrences associated to rays in Pascal’s triangle. Diophantine Analysis and Related Fields AIP Conference Proceedings, Melville, New York, Vol. 1264, 90–99.
  6. Belbachir, H., Komatsu, T., & Szalay, L. (2014). Linear recurrences associated to rays in Pascal’s triangle and combinatorial identities. Mathematica Slovaca, 64(2), 287–300.
  7. Belbachir, H., & Szalay, L. (2016). Fibonacci and Lucas Pascal triangles. Hacettepe Journal of Mathematics and Statistics, 45(5), 1343–1354.
  8. Charalambides, A. Enumerative Combinatorics, Chapman, &Hall/CRC.
  9. Enseley. (2006). Fibonacci’s triangle and other abominations. The Edge of Universe: Celebrating Ten Years of Maths Horizons, MAA, 287–307.
  10. Horadam, A. F. (1996). Polynomials Associated with Generalized Morgan-Voyce
    Polynomials. The Fibonacci Quarterly, 34(4), 342–348.
  11. Knuth, D. E. (1981). The Art of Computer Programming, Vol. 1. Second edition,
    Addison-Wesley Publishing Company, 1.2.6.(24).
  12. Morgan-Voyce, A. M. (1959). Ladder networks analysis using Fibonacci numbers. I.R.E. Trans. Circuit Theory, 6, 321–322.
  13. Sprugnoli, R. (2008). Negation of binomial coefficients. Discrete Mathematics, 308, 5070–5077.
  14. Swamy, M. N. S. (1966). Properties of the polynomial defined by Morgan-Voyce. The Fibonacci Quarterly, 4, 73–81.

Manuscript history

  • Received: 3 February 2021
  • Revised: 1 March 2022
  • Accepted: 9 March 2022
  • Online First: 22 March 2022

Related papers

Cite this paper

Belbachir, H., Bouyakoub, A., & Krim, F. (2022). Linear recurrence sequence associated to rays of negatively extended Pascal triangle. Notes on Number Theory and Discrete Mathematics, 28(1), 129-142, DOI: 10.7546/nntdm.2022.28.1.129-142.

Comments are closed.