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1 Introduction

It is well known that for x and y two real numbers and n a nonnegative integer, we have the
identity

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k, (1)

where the number
(
n
k

)
is the binomial coefficient.
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Pascal’s triangle is defined by the recursive description on nonnegative integers n and k,

(
n

k

)
=


(
n−1
k

)
+
(
n−1
k−1

)
, for n > k > 0,

1, for k = 0,

1, for k = n,

with the convention
(
n
k

)
= 0 whenever k < 0 or k > n.

The definition of the factorial of x of degree k, see [8], allows the extension
(
x
k

)
, the binomial

coefficient of degree k defined for every real number x as follows.(
x

k

)
=

(x)k
k!

, k = 0, 1, 2, . . .

where (x)k = x (x− 1) (x− 2) · · · (x− k + 1) , k = 0, 1, 2, . . . , with (x)0 = 1.

We have
(x+ k − 1)k = (−1)k (−x)k . (2)

For x a nonnegative integer, we recover the classical binomial coefficient. For x a negative integer,
we get the negative vertical binomial coefficient which has the sign of (−1)k .

The nonnegative integer (−1)k
(−n

k

)
gives the number of k combinations of n with repetition,

as follows from the relation (2), (
−n
k

)
= (−1)k

(
n+ k − 1

k

)
. (3)

The number
(−n

k

)
represents the coefficient of xky−n−k in the expansion of (x+ y)−n .

A conventional extension of binomial coefficients to arbitrary integers n and k is given in
the paper of Sprugnoli, see [13]. For more details, see also [11]. One can also see the book of
Atanassov [4].

Formula (3) provides an extension of Pascal’s triangle to negative rows.With given nonnegative
integers n and k,

(−n
k

)
denotes the k-th entry of the (−n)-th row.

The entry
(−n

k

)
in the negative Pascal’s triangle is determinated for n ≥ 1, as(

−n
k

)
=


(−n+1

k

)
−
(−n
k−1

)
, for k > 0,

1, for k = 0,

0, for k < 0.

The first values of the negative Pascal’s triangle are given in Table 1 below.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 · · ·
...

...
...

...
...

...
... · · ·

n = −5 1 −5 15 −35 70 −126 · · ·
n = −4 1 −4 10 −20 35 −56 · · ·
n = −3 1 −3 6 −10 15 −21 · · ·
n = −2 1 −2 3 −4 5 −6 · · ·
n = −1 1 −1 1 −1 1 −1 · · ·

Table 1. First values of negative Pascal’s triangle.
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The Arithmetic triangle is the original triangle defined by Pascal himself. Since then, several
generalizations have been constructed and studied in many ways.

Inspired by the Arithmetic triangle, Enseley [9] defined what he called GAT, the generalized
arithmetic triangle, which is a generalization of the arithmetic triangle, by considering as the
edges of this triangle the numerical sequences (an)n≥0 and (bn)n≥0 .He described a few particular
GATs as, for example, an = bn = Fn, with Fn being the Fibonacci number. Also, we can find
in [7], a detailed description of what the authors called Fibonacci and Lucas triangles.

In [5] and [6], the authors consider the generalized arithmetic triangle with an = xn, bn = yn

where they change the rule of addition. More precisely, the triangle considered is defined as
follows.

Let x and y be two real numbers. The generalized arithmetic triangle contains elements
〈
n
k

〉
in the n-th row and k-th column defined for n ≥ 2 by:

〈
n

k

〉
=


x
〈
n−1
k

〉
+ y
〈
n−1
k−1

〉
, for 1 ≤ k ≤ n− 1,

xn, for k = 0,

yn, for k = n,

with the convention
〈
n
k

〉
= 0 whenever k < 0 or k > n

In the present paper, we consider the problem of the extension of generalized arithmetic
triangle as defined by Belbachir and Szalay in [5], to negative rows.

With given nonnegative integers n and k,
〈−n

k

〉
denotes the k-th entry of the (−n)-th row.

The entry
〈−n

k

〉
in the extension of the generalized arithmetic triangle to negative rows is

determined for x 6= 0 and n ≥ 2, by:

〈
−n
k

〉
=


x−1
〈−n+1

k

〉
− x−1y

〈−n
k−1

〉
, for 1 ≤ k ≤ n− 1,

x−n, for k = 0,

0, for k < 0.

We call this extension to negative rows, the generalized negative arithmetic triangle.
The first rows of the generalized negative arithmetic triangle are given in Table 2 below.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
...

...
...

...
...

...
...

n = −8 1x−8 −8x−9y1 36x−10y2 −120x−11y3 330x−12y4 −792x−13y5 · · ·
n = −7 1x−7 −7x−8y1 28x−9y2 −84x−10y3 210x−11y4 −462x−12y5 · · ·
n = −6 1x−6 −6x−7y1 21x−8y2 −56x−9y3 126x−10y4 −252x−11y5 · · ·
n = −5 1x−5 −5x−6y1 15x−7y2 −35x−8y3 70x−9y4 −126x−10y5 · · ·
n = −4 1x−4 −4x−5y1 10x−6y2 −20x−7y3 35x−8y4 −56x−9y5 · · ·
n = −3 1x−3 −3x−4y1 6x−5y2 −10x−6y3 15x−7y4 −21x−8y5 · · ·
n = −2 1x−2 −2x−3y1 3x−4y2 −4x−5y3 5x−6y4 −6x−7y5 · · ·
n = −1 1x−1 −1x−2y1 1x−3y2 −1x−4y3 1x−5y4 −1x−6y5 · · ·

Table 2. Some values of the generalized negative arithmetic triangle.
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In this triangle, the elements lying on a finite ray defined by a fixed direction (r, q) and a fixed
value of p, form the finite sequence(

−n− qk
p+ rk

)
x−n−p−(r+q)kyp+rk, k = 0, 1, . . . , b(n− 1)/(−q)c ,

where, r ∈ N, q ∈ Z−, 0 ≤ p < r. For the concept of direction, one may consult [5].
Our aim is to calculate the sum of these elements along a fixed direction (r, q). For doing so,

we consider the sequence (V
(r,q,p)
−n )n≥1 defined by:

V
(r,q,p)
−n =

b(n−1)/(−q)c∑
k=0

(
−n− qk
p+ rk

)
x−n−p−(r+q)kyp+rk, (4)

with V0 = 0.

Observe that for 1 ≤ n < −q + 1, we have for each fixed p,

V
(r,q,p)
−n =

(
−n
p

)
x−n−pyp. (5)

2 Examples

First, we present some examples to illustrate such sequences with particular directions.

• The direction (r, q) = (1,−1). It deals with the sequence W−n = V
(1,−1,0)
−n given by

W−n =
n−1∑
k=0

(
−n+ k

k

)
x−nyk,

satisfying {
W−1 = x−1,

xW−n−1 = (1− y)W−n, n ≥ 1.

• The direction (r, q) = (1,−2). It concerns the sequence Ũ−n = V
(1,−2,0)
−n given by

Ũ−n =

b(n−1)/2c∑
k=0

(
−n+ 2k

k

)
x−n+kyk.

For (x, y) = (−1, 1), we obtain the sequence (F̃−n)n≥1:

F̃−n =

b(n−1)/2c∑
k=0

(
−n+ 2k

k

)
(−1)−n+k,

satisfying {
F̃0 = 0, F̃−1 = −1,
F̃−n = −F̃−n+1 + F̃−n+2, n ≥ 2.

(F̃−n)n≥1 = (−1, 1,−2, 3,−5, 8,−13, . . .) .
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One has (F̃−n)n≥1 = (−F−n)n≥1, where (F−n)n≥1 = (1,−1, 2,−3, 5,−8, 13, . . .) is the
negatively subscripted Fibonacci sequence defined by:{

F0 = 0, F1 = 1,

F−n = −F−n+1 + F−n+2, n ≥ 1.

For (x, y) = (−1
2
, 1
2
), we obtain the sequence (P̃−n)n≥1 :

P̃−n =

b(n−1)/2c∑
k=0

(
−n+ 2k

k

)
(−1

2
)−n+k(

1

2
)k,

satisfying {
P̃0 = 0, P̃−1 = −2,
P̃−n = −2P̃−n+1 + P̃−n+2, n ≥ 2.

(P̃−n)n≥1 = (−2, 4,−10, 24,−58, . . .) .

Note that (P̃−n)n≥1 = (−2P−n)n≥1 and (P−n)n≥1 = (1,−2, 5,−12, 29, . . .) is the negatively
subscripted Pell sequence defined by:{

P0 = 0, P1 = 1,

P−n = −2P−n+1 + P−n+2, n ≥ 1.

For (x, y) = (−2, 1), we obtain the sequence (J̃−n)n≥1 :

J̃−n =

b(n−1)/2c∑
k=0

(
−n+ 2k

k

)
(−2)−n+k,

satisfying {
J̃0 = 0, J̃−1 = −1

2
,

J̃−n = −1
2
J̃−n+1 +

1
2
J̃−n+2, n ≥ 2.

(J̃−n)n≥1 =
(
−1

2
, 1
4
,−3

8
, 5
16
,−11

32
, . . .

)
.

Observe that (J̃−n)n≥1 = (−J−n)n≥1, where (J−n)n≥1 =
(
1
2
,−1

4
, 3
8
,− 5

16
, 11
32
, . . .

)
is the

negatively subscripted Jacobsthal sequence defined by:{
J0 = 0, J1 = 1,

J−n = −1
2
J−n+1 +

1
2
J−n+2, n ≥ 1.

For (x, y) = (−2
3
, 1
3
), we obtain the sequence (φ̃−n)n≥1:

φ̃−n =

b(n−1)/2c∑
k=0

(
−n+ 2k

k

)
(−2

3
)−n+k(

1

3
)k,

satisfying {
φ̃0 = 0, φ̃−1 = −3

2
,

φ̃−n = −3
2
φ̃−n+1 +

1
2
φ̃−n+2, n ≥ 2.

(φ̃−n)n≥1 =
(
−3

2
, 9
4
,−33

8
, 117

16
,−417

32
, . . .

)
.
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One has (φ̃−n)n≥1 = (−3φ−n)n≥1, with (φ−n)n≥1 =
(
1
2
,−3

4
, 11

8
,−39

16
, 139

32
, . . .

)
is the

negatively subscripted Fermat sequence defined by:{
φ0 = 0, φ1 = 1

φ−n = −3
2
φ−n+1 +

1
2
φ−n+2, n ≥ 1.

Note that for x and y real numbers such that x 6= 0, we have{
Ũ0 = 0, Ũ−1 = x−1,

Ũ−n = x−1Ũ−n+1 − yx−1Ũ−n+2, n ≥ 2.

(Ũ−n)n≥1 is the extension of the sequence (Ũn)n≥0 defined by{
Ũ0 = 0, Ũ1 = −y−1,
Ũn = y−1Ũn−1 − y−1xŨn−2, n ≥ 2.

Also, (Ũ−n)n≥1 = (−y−1U−n)n≥1, with (U−n)n≥1 is the negatively subscripted (Un)n≥0
sequence defined by {

U0 = 0, U1 = 1,

Un = y−1Un−1 − y−1xUn−2, n ≥ 2.

3 Main results: Sum of the elements lying along a finite ray

Our purpose in this section is to establish the recurrence relation associated to
(
V

(r,q,p)
−n

)
n

formed
by the sum of the elements lying along a finite ray in the generalized negative arithmetic triangle.
First, we will present a well-known lemma (Lemma 3.2) playing a key role in determining the
main result of this paper. We prove it for convenience. Let’s start with

Lemma 3.1. Let x, y, z, be nonnegative integers satisfying z ≤ y ≤ x. Then
z∑

j=0

(−1)j
(
z

j

)(
x+ j

y

)
= (−1)z

(
x

y − z

)
.

Proof. Using the Vandermonde identity,
(
x+z
y

)
=
∑n

i=0

(
x
i

)(
z

y−i
)

for all x, y and z nonnegative
integers, we obtain:

z∑
j=0

(−1)j
(
z

j

)(
x+ j

y

)
=

z∑
j=0

(−1)j
(
z

j

) j∑
i=0

(
x

y − i

)(
j

i

)

=
z∑

i=0

(
x

y − i

)(
z

i

) z∑
j=i

(−1)j
(
z − i
j − i

)

=
z∑

i=0

(−1)i
(

x

y − i

)(
z

i

) z−i∑
k=0

(−1)k
(
z − i
k

)
.

Since for all i = 0, . . . , z − 1,
∑z−i

k=0 (−1)
k (z−i

k

)
= 0, we get the result.
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Lemma 3.2. Let x be a negative integer and y, z be nonnegative integers satisfying y ≥ z. Then

z∑
j=0

(−1)j
(
z

j

)(
x− j
y

)
=

(
x− z
y − z

)
.

Proof. Since x is a negative integer and y a nonnegative integer, then from (3), we have:

z∑
j=0

(−1)j
(
z

j

)(
x− j
y

)
=

z∑
j=0

(−1)j
(
z

j

)
(−1)y

(
−x+ y − 1 + j

y

)
.

From Lemma 3.1, we obtain

z∑
j=0

(−1)j
(
z

j

)(
x− j
y

)
= (−1)y+z

(
−x+ y − 1

y − z

)
=

(
x− z
y − z

)
.

This completes the proof.

Now, we give our main theorem.

Theorem 3.3. Let n, r ∈ N, q ∈ Z−, 0 ≤ p < r. The terms of the sequence

V−n = V
(r,q,p)
−n =

b(n−1)/(−q)c∑
k=0

(
−n− qk
p+ rk

)
x−n−p−(r+q)kyp+rk, (6)

satisfy for n > −r − q the linear recurrence relation

V−n − x
(
r

1

)
V−n−1 + x2

(
r

2

)
V−n−2 + · · ·+ (−x)r

(
r

r

)
V−n−r = yrV−n−q−r. (7)

Proof. Note first, that we can extend the summation in formula (6), up to b(n− 1)/(−q)cwithout
changing the total sum since for n ≥ 1, k > b(n− 1)/(−q)c one gets p + rk > −n − qk > 0

and hence
(−n−qk

p+rk

)
= 0. Now, for n > −r − q, we have

r∑
j=0

(−x)j
(
r

j

)
V−n−j =

r∑
j=0

∑
k≥0

(−x)j
(
r

j

)(
−n− j − qk

p+ rk

)
x−n−j−p−(r+q)kyp+rk

=
∑
k≥0

x−n−p−(r+q)kyp+rk

r∑
j=0

(−1)j
(
r

j

)(
−n− j − qk

p+ rk

)
.

While for n ≥ 1,

r∑
j=0

(−1)j
(
r

j

)(
−n− j − qk

p+ rk

)
=

r∑
j=0

(−1)j
p∑

m=0

(
r − p
j −m

)(
p

m

)(
−n− j − qk

p+ rk

)

=
r−m∑
l=0

(−1)l+m
p∑

m=0

(
r − p
l

)(
p

m

)(
−n− l −m− qk

p+ rk

)

=

r−p∑
l=0

(−1)l
(
r − p
l

) p∑
m=0

(−1)m
(
p

m

)(
−n− l −m− qk

p+ rk

)
.
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By Lemma 3.2,

p∑
m=0

(−1)m
(
p

m

)(
−n− l −m− qk

p+ rk

)
=

(
−n− l − p− qk

rk

)
.

So,

r∑
j=0

(−1)j
(
r

j

)(
−n− j − qk

p+ rk

)
=

r−p∑
l=0

(−1)l
(
r − p
l

)(
−n− l − p− qk

rk

)
=

(
−n− qk − r
rk − r + p

)
.

Therefore,

r∑
j=0

(−x)j
(
r

j

)
V−n−j =

∑
k≥1

x−n−p−(r+q)kyp+rk

(
−n− qk − r
p+ r(k − 1)

)
=

∑
k≥0

x−n−p−(r+q)(k+1)yp+r(k+1)

(
−n− r − q(k + 1)

p+ rk

)
= yrV−n−q−r.

This completes the proof.

The order of the recurrence sequence given in Theorem 3.3 is equal to (−q) for r+ q < 0 and
is equal to r for r + q > 0. In the last situation, one deals with the Morgan-Voyce phenomenon.
For more details, see [1, 2].

Indeed, since q < 0 and r + q > 0, we can write (7) as

V−n − x
(
r

1

)
V−n−1 + · · ·+

(
(−x)r+q

(
r

r + q

)
− yr

)
V−n−r−q + · · ·+ (−x)r

(
r

r

)
V−n−r = 0.

Note that the coefficient yr of V−n−r−q is subtracted from one of the terms V−n−1, . . . , V−n−r.

Example 3.4. The sequence
(
V

(2,−1,0)
−n

)
n

satisfies the following recurrence relation of order
r = 2,

V−n = (2x+ y2)V−n−1 − x2V−n−2,

with V−1 = x−1, V−2 = x−2+x−3y2. However, the sequence
(
V

(1,−3,0)
−n

)
n

satisfies the recurrence

relation of order (−q) = 3,

V−n+2 = y−1V−n − xy−1V−n−1,

with V0 = 0, V−1 = x−1, V−2 = x−2.

At this level, a comparison with Theorem 1 in [5] is interesting. The recurrence sequence
given here by Theorem 3.3, is not an extension to negative subscripts of the recurrence given by
Theorem 1 in [5] . Indeed, for example, for r = 2, q = −1, p = 0, (Tn)n≥0 in [5] satisfies for
n ≥ 2 the recurrence

Tn = (2x+ y2)Tn−1 − x2Tn−2,
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with T0 = 0, T1 = 1. So, by extension to negative subscripts, we deduce that T−1 = −x−2 while
for r = 2, q = −1, p = 0, we have V−1 = x−1 and for n ≥ 1,

V−n = (2x+ y2)V−n−1 − x2V−n−2.

So, (V−n)n is not the extension to negative subscripts of the sequence (Tn)n≥0 given in [5]. It
is not sufficient to replace n by (−n).

4 Application to the negatively subscripted
Fibonacci numbers

As an application of Theorem 3.3, we obtain a new formula for the Fibonacci numbers with
negative subscript.

Theorem 4.1. For m ≥ 1,

F−2m+1 =
2m−1∑
k=0

bk/2c∑
s=0

(−1)m+k+s 2k−2s
(
k

2s

)(
−2m+ k

2k

)
,

F−2m =
2m−1∑
k=0

b(k−1)/2c∑
s=0

(−1)m+k+s+1 2k−2s−1
(

k

2s+ 1

)(
−2m+ k

2k

)
.

Proof. From (9) , for r = 2, q = −1, x = i and y2 = 1− 2i, we get

V−n = i−n
n−1∑
k=0

(
−n+ k

2k

)
(−i− 2)k.

While, if we put in Theorem 3.3, r = 2, q = −1, we obtain

−x2V−n = −(2x+ y2)V−n+1 + V−n+2.

So, for x = i and y2 = 1− 2i, we get V−n = −V−n+1 + V−n+2. Hence, V−n = F−n+1 − iF−n, as
V−1 = −i, V−2 = 1 + i. It follows that

F−n+1 = Re

(
i−n

n−1∑
k=0

(
−n+ k

2k

)
(−i− 2)k

)

and

F−n = Im

(
i−n

n−1∑
k=0

(
−n+ k

2k

)
(−i− 2)k

)
.

Then, by putting n = 2m, and after some combinatorial computations, we deduce F−2m and
F−2m+1.
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5 Generating function of sum of elements
lying along a finite ray

In this section we use the following well known lemma, see for example [6], in order to prove our
Theorem 5.2.

Lemma 5.1. For r ≥ k + p, we have

k∑
j=0

(−1)j
(

r

k − j

)(
j + p

p

)
=

(
r − p− 1

k

)
.

Now, for a fixed direction (r, q) with q < 0, r+ q < 0, and a fixed value of p, we consider the

sequence (V
(r,q,p)
−n )n∈N of sums of elements lying on the corresponding ray in the generalized

negative arithmetic triangle. The generating function T (z) =
∑

n≥0 V−n−1z
n is given in the

following theorem.

Theorem 5.2. Let x, y and z be real numbers such that x 6= 0. Then, the generating function

associated to (V
(r,q,p)
−n )n∈N is given by

T (z) =
ypzq (z − x)r−p−1

yr − zq (z − x)r
.

Proof. In Theorem 3.3, for r + q < 0, we obtain with n > −q

V−n+r − x
(
r

1

)
V−n+r−1 + x2

(
r

2

)
V−n+r−2 + · · ·+ (−x)r

(
r

r

)
V−n = yrV−n−q.

Hence, for n > −q, we can write

V−n =
r∑

j=1

(−1)j+1 x−j
(

r

r − j

)
V−n+j +

(
y

−x

)r

V−n−q.

Setting

aj =


x−j
(
r
j

)
if 1 ≤ j ≤ r,

0 if r + 1 ≤ j ≤ −q − 1,

(−1)−q+1 yr(−x)−r for j = −q,

and U−n = V−n−1, we deduce for n > −q − 1,

U−n =

−q∑
j=1

(−1)j+1 ajU−n+j,

and from relation (5), we obtain for n ≤ −q − 1,

U−n =

(
−n− 1

p

)
x−n−1−pyp.

On the one hand, we have
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T (z) =
∑
n≥0

U−nz
n

=

−q−1∑
n=0

U−nz
n +

∑
n≥−q

U−nz
n

=

−q−1∑
n=0

U−nz
n +

∑
n≥−q

−q∑
j=1

(
(−1)j+1 ajU−n+j

)
zn

=

−q−1∑
n=0

U−nz
n +

−q∑
j=1

(−1)j+1 ajz
j

(
T (z)−

−q−1−j∑
k=0

U−kz
k

)
.

Considering a0 = 1, we obtain( −q∑
j=0

(−1)j ajzj
)
T (z) =

−q−1∑
n=0

U−nz
n +

−q−1∑
k=0

(
k∑

j=1

(−1)j ajU−k+j

)
zk.

Hence,

T (z) =

∑−q−1
k=0

(∑k
j=0 (−1)

j ajU−k+j

)
zk∑−q

j=0 (−1)
j ajzj

.

On the other hand,

−q∑
j=0

(−1)j ajzj =
r∑

j=0

(−1)j ajzj −
(
−y
x

)r
z−q

=
r∑

j=0

(−1)j x−j
(
r

j

)
zj −

(
−y
x

)r
z−q

=
(
1− z

x

)r
−
(
−y
x

)r
z−q,

and

−q−1∑
k=0

(
k∑

j=0

(−1)j ajU−k+j

)
zk =

r∑
k=0

(
k∑

j=0

(−x)−j
(
r

j

)
U−k+j

)
zk

=
r∑

k=0

(
k∑

j=0

(−x)−k+j

(
r

k − j

)
U−j

)
zk

=
r∑

k=0

(
k∑

j=0

(−x)−k+j ( r
k−j

)(−j−1
p

)
x−j−1−pyp

)
zk.

From (3),
(−j−1

p

)
= (−1)p

(
j+p
p

)
. So

−q−1∑
k=0

(
k∑

j=0

(−1)j ajU−k+j

)
zk = (−y)p x−1−p

r∑
k=0

k∑
j=0

(−1)j
(

r

k − j

)(
j+p
p

) (
−z
x

)k
.
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From Lemma 5.1, we finish the proof by
−q−1∑
k=0

(
k∑

j=0

(−1)j ajU−k+j

)
zk = (−y)p x−1−p

r∑
k=0

(
r − p− 1

k

)(
−z
x

)k
= (−y)p x−1−p

r−p−1∑
k=0

(
r − p− 1

k

)(
−z
x

)k
= (−y)p x−1−p

(
1− z

x

)r−p−1
.

This completes the proof.

For r = 1, q = −2, x = −1, y = 1 and from the second example in Section 2, we have
V−n = −F−n. Using Theorem 5.2, we get the well-known generating function of the negatively
subscripted of Fibonacci numbers,∑

n≥0

F−n−1z
n =

1

1 + z − z2
.

5.1 Application to Morgan-Voyce polynomials

Let s be an integer and consider the sequence (Mn (t))n defined by

M0 (t) = 1, M1 (t) = 1 + s+ t, Mn (t) = (2 + t)Mn−1 (t)−Mn−2 (t) , n ≥ 2.

For s = 0, 1, 2, we obtain respectively the Morgan-Voyce polynomials bn (t) , Bn (t) and
cn (t) (see [3, 10, 12, 14]). Many interesting results have been established regarding these
polynomials. In [14], the author gives the closed form expressions

Bn (t) =
n∑

k=0

(
n+ k + 1

1 + 2k

)
tk, (8)

bn (t) =
n∑

k=0

(
n+ k

2k

)
tk, (9)

cn (t) =
n∑

k=0

2n+ 1

2k + 1

(
n+ k

2k

)
tk, (10)

and their generating functions∑
n≥0

Bn (t) z
n =

1

1− (t+ 2)z − z2
,

∑
n≥0

bn (t) z
n =

1− z
1− (t+ 2)z − z2

,

∑
n≥0

cn (t) z
n =

1 + z

1− (t+ 2)z − z2
.

It is easy to establish the following equalities involving negative subscripts.

B−n (t) = −Bn−2 (t) , n ≥ 0, (11)

b−n (t) = bn−1 (t) , n ≥ 0,

c−n (t) = −cn−1 (t) , n ≥ 0.
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So, it follows from (8), (9) and (10) that

B−n (t) =
n−2∑
k=0

(
−n+ k + 1

1 + 2k

)
tk, (12)

b−n (t) =
n−1∑
k=0

(
−n+ k

2k

)
tk, (13)

c−n (t) =
n−1∑
k=0

1− 2n

1 + 2k

(
−n+ k

2k

)
tk. (14)

In this section, as an application of Theorem 5.2, we establish a new formula for B−n (t) ,
b−n (t) and c−n (t) .

Proposition 5.3. We have,

B−n (t) = −
bn−2

2 c∑
k=0

(
−n+ 2k + 1

k

)
(t+ 2)n−2−2k, n ≥ 2

b−n (t) =

bn−1
2 c∑

k=0

(
−n+ 2k

k

)
(t+ 2)n−1−2k −

bn−2
2 c∑

k=0

(
−n+ 2k + 1

k

)
(t+ 2)n−2−2k, n ≥ 1

c−n (t) = −
bn−1

2 c∑
k=0

(
−n+ 2k

k

)
(t+ 2)n−1−2k −

bn−2
2 c∑

k=0

(
−n+ 2k + 1

k

)
(t+ 2)n−2−2k, n ≥ 1

Proof. By putting in Theorem 5.2, r = 1, q = −2, p = 0, x = y = (t+ 2)−1 , we get∑
n≥0

V−n−1z
n =

t+ 2

1− (t+ 2)z + z2
,

∑
n≥0

V−n−1z
n = (t+ 2)

∑
n≥0

Bn (t) z
n.

So, for n ≥ 0, V−n−1 = (t+ 2)Bn (t) and from (11) ,

B−n (t) = − (t+ 2)−1 V−n+1 = −
bn−2

2 c∑
k=0

(
−n+ 2k + 1

k

)
(t+ 2)n−2−2k

for n ≥ 2.

In the same way, one gets (13) and (14) .

6 Conclusion

In this paper, we considered an extension of generalized arithmetic triangle to negative values
of rows and we established the recurrence relation associated to the sum of diagonal elements
laying along finite rays, this last one is of order r or −q according to the sign of r + q, where
r ∈ N and q ∈ Z−. We also wrote down the corresponding generating function. We conclude by
an application to Fibonacci numbers and Morgan-Voyce polynomials with negative subscripts.
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