József Sándor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 1, Pages 124–128
DOI: 10.7546/nntdm.2022.28.1.124-128
Full paper (PDF, 149 Kb)
Details
Authors and affiliations
József Sándor
Department of Mathematics, Babeș-Bolyai University
Cluj-Napoca, Romania
Abstract
As a continuation of [6], we deduce some inequalities of a new type for the prime counting function π(x).
Keywords
- Prime counting function
- Inequalities
- Hardy–Littlewood conjecture
2020 Mathematics Subject Classification
- 11A25
- 11A41
References
- Alzer, H., Kwong, M. K., & Sándor, J. Inequalities involving π(x). Rendiconti del Seminario Matematica della Universitá di Padova, pp. 1-15, to appear (Preprint published at the journal website).
- Panaitopol, L. (1999). Several approximations of π(x): Mathematical Inequalities and Applications, 2(3), 317–324.
- Rosser, J. B., & Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics, 6(1), 64–94.
- Sándor, J., Mitrinovic, D. S., & Cristici, B. (2006). Handbook of Number Theory, Vol. I, Springer.
- Sándor, J., & Atanassov, K. T. (2021). Arithmetic Functions. Nova Science Publ., New York.
- Sándor, J. (2021). On certain inequalities for the prime counting function. Notes on Number Theory and Discrete Mathematics, 27(4), 149–153.
Manuscript history
- Received: 30 October 2021
- Accepted: 11 February 2022
- Online First: 28 February 2022
Related papers
- Sándor, J. (2021). On certain inequalities for the prime counting function. Notes on Number Theory and Discrete Mathematics, 27(4), 149-153.
- Sándor, J. (2023). On certain inequalities for the prime counting function – Part III. Notes on Number Theory and Discrete Mathematics, 29(3), 454-461.
Cite this paper
Sándor, J. (2022). On certain inequalities for the prime counting function – Part II. Notes on Number Theory and Discrete Mathematics, 28(1), 124-128, DOI: 10.7546/nntdm.2022.28.1.124-128.