John L. Simons
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 1, Pages 48–63
DOI: 10.7546/nntdm.2022.28.1.48-63
Full paper (PDF, 326 Kb)
Details
Authors and affiliations
John L. Simons
University of Groningen
PO Box 800, 9700 AV Groningen, The Netherlands
Abstract
Consider a sequence of numbers defined by if is even, and if is odd. A -cycle is a periodic sequence with one transition from odd to even numbers. We prove theoretical and computational results for the existence of -cycles, and discuss a generalization to more complex cycles.
Keywords
- Collatz problem
- Higher order difference equation
- Linear form in logarithms
2020 Mathematics Subject Classification
- 11B83
- 11J86
References
- Baker, A. (1968). Linear forms in the logarithms of algebraic numbers IV. Mathematika, 15, 204–216.
- Brox, B. (2000). Collatz cycles with few descents. Acta Arithmetica, 92, 181–88.
- Davison, J. L. (1976). Some comments on an Iteration problem. Proceedings of the 6th Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Manitoba, 155–159, Congressus Numerantium XVII, Utilitas Math., Winnipeg, MN, 1977.
- Dujella, A., & Petho, A. (1998). Generalization of a theorem of Baker and Davenport. The Quarterly Journal of Mathematics, 49(3), 291–306.
- Evertse, J. H. (2007). Linear Forms in Logarithms I: Complex and p-adic. Available online at: http://www.math.leidenuniv.nl/~evertse/linearforms.pdf.
- Hardy, G. H., & Wright, E. M. (1981). An Introduction to the Theory of Numbers, 5th ed., Oxford University Press.
- Lagarias, J. C. (2011). The 3x + 1 Problem: An Annotated Bibliography. For latest results see: http://arxiv.org/abs/math.NT/0309224.
- Laurent, M., Mignotte, M., & Nesterenko, Y. (1995). Formes lineaires en deux logarithmes et determinants d’interpolation. Journal of Number Theory, 55, 285–321.
- Luca, F. (2005). On the non-trivial cycles in Collatz’s problem. SUT Journal of Mathematics, 41(1), 31–41.
- Matveev, E. M. (1998). An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Part I. Izvestia: Mathematics, 62(4), 723–772.
- Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Part II. Izvestia: Mathematics, 64(6), 125–180.
- Mignotte, M. (2008). A kit on linear forms in three logarithms. Available online at: http://irma.math.unistra.fr/~bugeaud/travaux/kit.pdf.
- Rhin, G. (1987). Approximants de Pade et mesures effectives d’irrationalite. Progress in Mathematics, 71, 155–164.
- Simons, J. L., & de Weger, B. M. M. (2005). Theoretical and computational bounds for m-cycles of the 3n + 1 problem. Acta Arithmetica, 117.1, 51–70. For latest results see: http://www.win.tue.nl/~bdeweger/research.html.
- Steiner, R. P. (1978). A Theorem on the Syracuse Problem. Proceeding of 7th Manitoba Conference on Numerical Mathematics 1977, Winnipeg, 553–559.
Manuscript history
- Received: 10 June 2021
- Revised: 18 January 2022
- Accepted: 2 February 2022
- Online First: 9 February 2022
Related papers
Cite this paper
Simons, J. L. (2022). Cycles of higher-order Collatz sequences. Notes on Number Theory and Discrete Mathematics, 28(1), 48-63, DOI: 10.7546/nntdm.2022.28.1.48-63.