Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2022, Volume 28, Number 1, Pages 48–63 DOI: 10.7546/nntdm.2022.28.1.48-63

Cycles of higher-order Collatz sequences

John L. Simons

University of Groningen PO Box 800, 9700 AV Groningen, The Netherlands e-mail: j.l.simons@rug.nl

Received: 10 June 2021 Accepted: 2 February 2022

Revised: 18 January 2022 **Online First:** 9 February 2022

Abstract: Consider a sequence of numbers $x_n \in \mathbb{Z}_+$ defined by $x_{n+1} = \frac{x_n}{2}$ if x_n is even, and $x_{n+1} = \frac{x_n + 2x_{n-1} + q}{2}$ if x_n is odd. A 1-cycle is a periodic sequence with one transition from odd to even numbers. We prove theoretical and computational results for the existence of 1-cycles, and discuss a generalization to more complex cycles.

Keywords: Collatz problem, Higher order difference equation, Linear form in logarithms. **2020 Mathematics Subject Classification:** 11B83, 11J86.

1 Introduction

1.1 Definitions and terminology

Consider the higher-order Collatz sequence, defined by the function

$$x_{n+1} = \frac{x_n}{2}$$
 if $x_n \equiv 0 \pmod{2}$ and $x_{n+1} = \frac{x_n + 2x_{n-1} + 1}{2}$ if $x_n \equiv 1 \pmod{2}$ (1)

starting with $x_0 = 7, x_1 = 11$, i.e. (7, 11, 13, 18, 9, 23, 21, 34, ...). By definition, this higher-order sequence differs from the original Collatz sequence. If n is odd, instead of $x_{n+1} = \frac{3x_n + 1}{2}$ we now have $x_{n+1} = \frac{x_n + 2x_{n-1} + 1}{2}$.

We define an *m*-cycle in a different way compared to the definition of Simons and de Weger [14] for the original Collatz function. See the Section 6, Remark (1). An *m*-cycle has *K* odd and *L* even numbers and consists of *m* pairs of a subsequence of odd numbers, followed by a subsequence of even numbers. If $x_0, x_1 = \frac{x_0}{2}$ are the first numbers, then $x_{K+L} = x_0$. The reason for our definition is the crucial role of *m*, the number of transitions in the sequence from odd to even numbers, in our analysis. As usual, we denote the number of odd and even numbers by *K*, *L* for *m*-cycles and by k, ℓ for 1-cycles.

For the original Collatz sequence, Steiner and also Davison [3, 15] call a subsequence of odd numbers, followed by a subsequence of even numbers, a circuit. Brox [2] considers cycles of odd numbers only and calls a number a descendent if the next number is smaller. A descendent is the (odd) predecessor of a local maximum in an *m*-cycle.

1.2 Motivation

Cycle existence for the original Collatz sequence had been researched extensively [7]. Roughly speaking, if a cycle exists then K, L must satisfy $2^{K+L} \simeq 3^K$ while transcendental number theory shows that $|(K + L) \log 2 - K \log 3|$ cannot be arbitrary small. This leads to an upper bound for K. Steiner proves that the only 1-cycle is (1, 2). He uses a lemma on linear log forms, originally developed by Baker [1], later refined [8, 10, 13]. Luca [9] (and others) considers odd numbers x_j only. A cycle is represented by the structure $\langle \ell_1, \ldots, \ell_k \rangle$ where ℓ_j is the maximum power of 2 that divides $3x_j + 1$. In Luca's notation Steiner has proved that the only $\langle 1, \ldots, 1, \ell \rangle$ is $\langle 2 \rangle$. Luca proves a more general result i.e. the number of cycles of a particular structure type is finite.

Steiner's proof [15] of the (non-)existence of 1-cycles assumes a 1-cycle consisting of an increasing subsequence of k odd numbers (starting with $x_0 = a2^k - 1$), followed by a decreasing subsequence of ℓ even numbers (starting with $x_k = a3^k - 1$) down to $x_{k+\ell} = x_0$. From $x_{k+\ell} = \frac{x_k}{2^\ell}$ follows the equation $\frac{a3^k - 1}{2^\ell} = a2^k - 1$, and this leads to the kernel inequality

$$0 < 2^{k+\ell} - 3^k < 2^\ell, \tag{2}$$

with as only solution $k = \ell = 1$. Simons and de Weger [14] prove that for $m \le 75$ no *m*-cycles exist and they present explicit bounds for the cycle length for m > 75. They prove (see also Brox [2]):

Theorem 1. For each *m* the original Collatz sequence has a finite number of *m*-cycles, and for the cycle length an explicit *m*-dependent upper bound exists.

As the example above shows, Steiner's assumption about the expression of the start numbers of the odd, and even subsequence $x_0 = a2^k - 1$, $x_k = a3^k - 1$ is no longer true, so his proof and the proof of Simons and de Weger (which are based on these expressions) cannot simply be generalized to higher-order Collatz sequences.

There is however computational evidence that Theorem 1 is true for higher-order Collatz sequences. For starting values $< 10^6$ the higher-order sequence of Equation (1) has 11 cycles, and similar computational evidence, i.e., some cycles with "small" numbers was found for q > 1. Every cycle for q = 1 corresponds to a cycle of q-folds if q > 1, however also cycles with numbers $\not\equiv 0 \pmod{q}$ can exist.

1.3 Main result

We generalize the approach of Simons and de Weger in a non-trivial way. A proof of Theorem 1 for 1-cycles of higher-order Collatz sequences and a list of existing of 1-cycles for small

q is presented in this paper. We discuss a possible generalization to m-cycles. We consider higher-order Collatz sequences in \mathbb{Z}_+ defined by:

 $x_{n+1} = \frac{x_n}{2}$ if $x_n \equiv 0 \pmod{2}$ and $x_{n+1} = \frac{x_n + 2x_{n-1} + q}{2}$ if $x_n \equiv 1 \pmod{2}$ (3) with q = 1 or an odd prime. Our main result is:

Theorem 2 (Main Theorem). Consider the higher-order Collatz sequence of Equation (3).

- 1. For each m there is a finite number of m-cycles.
- 2. The cycle length of an *m*-cycle is upper bounded by an explicit function of *m*.
- *3.* For q = 1 there are no 1-cycles.
- 4. For q = 3, 7, 11 there are no other 1-cycles than listed in the table in section 4.
- 5. For q = 5, 13, 17, 19 there are no 1-cycles.
- 6. For $19 < q \le 997$ 1-cycles are exceptional (numerical result, no theoretical proof).

We start with an analysis for q = 1 and deal with q > 1 later.

2 Generalization of Steiner's proof for higher-order Collatz sequences

2.1 Rephrasing Steiner's proof for the original Collatz sequence

Steiner's proof can be rephrased without a priori using the expression $x_0 = a2^k - 1, x_k = a3^k - 1$. A cycle of k odd numbers, followed by ℓ even numbers starting with x_0 increases up to $x_k = \frac{3^k x_0 + 3^k - 2^k}{2^k} = 2^\ell x_0$. So we find

$$x_0 = \frac{3^k - 2^k}{2^{k+\ell} - 3^k} \tag{4}$$

which can be rewritten as

$$2^{k}(2^{\ell}x_{0}+1) = 3^{k}(x_{0}+1).$$
(5)

from which follows $x_0 = a2^k - 1$ and $2^\ell x_0 = a3^k - 1$. The expressions $x_0 = a2^k - 1$, $x_k = a3^k - 1$ are a result of the analysis. For higher-order Collatz sequences this line of analysis can be applied to find an appropriate expression for x_0 .

2.2 An expression for x_0 in 1-cycles of the higher-order Collatz sequence with q = 1

Assume that for the sequence of Equation (1), there exists a 1-cycle, consisting of k odd numbers followed by ℓ even numbers. For ease of analysis we take x_1 odd, and $x_0 = 2x_1$. So x_1, \ldots, x_k are odd numbers, $x_{k+1}, \ldots, x_{k+\ell}$ are even numbers, and $\frac{x_{k+1}}{2^{\ell-1}} = x_{k+\ell} = x_0$. From Equation (1) we find for $0 \le n \le k+1$

$$x_n = \frac{a_n x_0 + b_n}{2^n},\tag{6}$$

where a_n, b_n are solutions of difference equations $a_{n+1} = a_n + 4a_{n-1}, a_0 = a_1 = 1$, and $b_{n+1} = b_n + 4b_{n-1} + 2^n, b_0 = b_1 = 0$. For $n \ge 0$ we have

$$a_n = \frac{1}{\sqrt{17}} \left[\left(\frac{1+\sqrt{17}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{17}}{2} \right)^{n+1} \right],\tag{7}$$

$$b_n = \frac{\sqrt{17} + 3}{2\sqrt{17}} \left(\frac{1+\sqrt{17}}{2}\right)^n + \frac{\sqrt{17} - 3}{2\sqrt{17}} \left(\frac{1-\sqrt{17}}{2}\right)^n - 2^n.$$
 (8)

Application of the cycle condition $x_{k+1} = \frac{a_{k+1}x_0 + b_{k+1}}{2^{k+1}} = 2^{\ell-1}x_0$ leads to a new expression (we define $\overline{b}_n = b_n + 2^n$ for comparison with Equation (4)) for x_0 :

$$x_0 = \frac{\bar{b}_{k+1} - 2^{k+1}}{2^{k+\ell} - a_{k+1}} \tag{9}$$

This is a necessary condition for a 1-cycle and consequently this equation can result in a rational or negative x_0 . E.g. $k = 3, \ell = 2$ leads to the sequence $(x_0 = \frac{22}{3}, \frac{11}{3}, \frac{29}{3}, \frac{27}{3}, \frac{44}{3}, \frac{22}{3})$, and $k = 2, \ell = 1$ leads to the sequence $(x_0 = -6, -3, -7, -6)$.

Equation (9) can be rewritten as

$$2^{k+1}(2^{\ell-1}x_0+1) = a_{k+1}x_0 + \bar{b}_{k+1}, \tag{10}$$

from which follows $a_{k+1}x_0 = c2^{k+1} - \overline{b}_{k+1}$.

We checked numerically that in general $(a_{k+1}, \overline{b}_{k+1}) = 1$, so there is no simple expression $x_0 = w \cdot 2^k - d$ similar to $x_0 = a \cdot 2^k - 1$ for the original Collatz sequence. Computational evidence suggests that for the higher-order Collatz sequence of Equation (1) the constant -1 in the expression $x_0 = a \cdot 2^k - 1$ becomes a variable, depending on k.

2.3 The nonconstant term in the expression for x_1

Because of the choice $x_0 = 2x_1$, we analyze x_1 as the first odd number in a sequence. We are looking for an expression such that x_1, \ldots, x_k are odd, and x_{k+1} is even. Indeed we have:

Lemma 3. Consider the higher-order Collatz sequence of Equation (1). For $k \ge 1$ there exists a $d_{k+1} \equiv 1 \pmod{2}$ with $1 \le d_{k+1} \le 2^{k+1} - 1$ such that for $x_1 = d_{k+1}$, $x_0 = 2x_1$ the numbers $x_1 \dots x_k$ are odd, and x_{k+1} is the first even number.

Proof. From the sequence (6, 3, 8) we easily find $d_2 = 3$. We define $y_{j,k}$, $z_{j,k}$ through the initial conditions $y_{1,2} = 4$, $y_{2,2} = 10$, $z_{1,2} = 1$, $z_{2,2} = 3$, and $y_{j,k}$, $z_{j,k}$, d_{k+1} for $k \ge 2$ through the recurrence relations

$$y_{k+1,k} = \frac{y_{k,k} + 2 \cdot y_{k-1,k}}{2},$$
 (11)

$$z_{k+1,k} = \frac{z_{k,k} + 2 \cdot z_{k-1,k} + 1}{2}, \qquad (12)$$

if
$$z_{k+1,k} \equiv 0 \pmod{2}$$
, then $d_{k+1} = z_{1,k}$, (13)

and for
$$1 \le j \le k+1 z_{j,k+1} = y_{j,k} + z_{j,k}$$
, (14)

if
$$z_{k+1,k} \equiv 1 \pmod{2}$$
, then $d_{k+1} = y_{1,k} + z_{1,k}$, (15)

and for
$$1 \le j \le k+1 z_{j,k+1} = z_{j,k}$$
, (16)

for
$$1 \le j \le k+1 y_{j,k+1} = 2 \cdot y_{j,k}$$
. (17)

We calculate d_3, d_4, d_5 .

$$k = 3 \rightarrow y_{4,3} = 29 \qquad z_{4,3} = 5$$

$$z_{4,3} \equiv 1 \pmod{2} \rightarrow d_4 = y_{1,3} + z_{1,3} = 9 \qquad (= z_{1,3} + 2^3)$$

$$z_{1,4} = z_{1,3} = 1 \qquad y_{1,4} = 2y_{1,3} = 16$$

$$z_{2,4} = z_{2,3} = 3 \qquad y_{2,4} = 2y_{2,3} = 40$$

$$z_{3,4} = z_{3,3} = 3 \qquad y_{3,4} = 2y_{3,3} = 36$$

$$z_{4,4} = z_{4,3} = 5 \qquad y_{4,4} = 2y_{4,3} = 58$$

$$k = 4 \rightarrow y_{5,4} = 65 \qquad z_{5,4} = 6$$

$$z_{5,4} \equiv 0 \pmod{2} \rightarrow d_5 = z_{1,4} = 1 \qquad (= z_{1,4})$$

$$z_{1,5} = y_{1,4} + z_{1,4} = 17 \quad y_{1,5} = 2y_{1,4} = 32$$

$$\dots \qquad \dots$$

In general, there are two cases for $z_{k+1,k}$.

- Case 1. $z_{k+1,k} \equiv 0 \pmod{2}$. Set $x_j = z_{j,k}, j = 1, ..., k+1$, and $x_0 = 2x_1$. Now $x_1, ..., x_k$ are odd, x_{k+1} is even, and $(x_j, j = 1, ..., k+1)$ satisfy $x_{j+1} = \frac{x_j + 2x_{j-1} + 1}{2}$. We conclude that $d_{k+1} = x_1 = z_{1,k}$.
- Case 2. $z_{k+1,k} \equiv 0 \pmod{1}$. Set $x_j = z_{j,k}$, $j = 1, \dots, k+1$, and $x_0 = 2x_1$. Now x_1, \dots, x_{k+1} are odd. Set $y_1 = x_1 + 2^k$, and $y_0 = 2y_1$, and for $j = 1, \dots, k+1$ define $y_{j+1} = \frac{y_j + 2y_{j-1} + 1}{2}$. For the maximal power of 2 that divides $y_j x_j$ we have $2^{k+1-j}|y_j x_j$. This implies that $y_{k+1} x_{k+1}$ has maximal factor 2^0 , i.e., y_{k+1} is even, while y_1, \dots, y_k are odd. We conclude that $d_{k+1} = y_1 = x_1 + 2^k = z_{1,k} + y_{1,k}$.

The adjustment $d_{k+1} = y_{1,k} + z_{1,k}$ takes place at most k times, so $d_{k+1} \leq 2^{k+1} - 1$ which proves this lemma.

We computed $d_2 = 3, d_3 = 5, d_4 = 9, d_5 = 1, d_6 = 49, d_7 = 81, d_8 = 17, d_9 = 145, d_{10} = 913, \dots$ For k = 4 we have $d_5 = 1$, and the sequence $(x_0 = 2, 1, 3, 3, 5, 6)$, etc.

2.4 The general expression for x_1

Note that $x_1 = d_{k+1} + 2^{k+1}$ also leads to k odd numbers, and x_{k+1} as the first even number. Hence the general expression for x_1 as the beginning of a sequence of k odd numbers, followed by an even number is $x_1 = w \cdot 2^{k+1} + d_{k+1}$ with constant w and d_{k+1} defined in Lemma 3.

3 1-cycles for the higher-order Collatz sequence with q = 1

3.1 The kernel inequality for 1-cycles

Once x_1 (and $x_0 = 2x_1$) are known, we have an expression for x_{k+1} by substitution of the expression for x_0 into Equation (6)

$$x_{k+1} = \frac{a_{k+1}(2^{k+2}w + 2d_{k+1}) + b_{k+1}}{2^{k+1}}.$$
(18)

From the cycle condition $\frac{x_{k+1}}{x_1} = 2^{\ell}$ we find

$$\frac{a_{k+1}(2^{k+2}w+2d_{k+1})+b_{k+1}}{2^{k+1}w+d_{k+1}} = 2^{k+\ell+1},$$
(19)

which can be rewritten as

$$(2^{k+2}w + 2d_{k+1})(2^{k+\ell} - a_{k+1}) = b_{k+1}.$$
(20)

This leads to the higher-order Collatz kernel inequality (compare Equation (2))

$$0 < 2^{k+\ell} - a_{k+1} < \frac{b_{k+1}}{2d_{k+1}}.$$
(21)

To find a theoretical upper bound for k for 1-cycles of the higher-order Collatz sequence, we need for $2^{k+\ell} - a_{k+1}$ (as a function of k) an upper bound from Equation (21), and a lower bound from transcendental number theory.

3.2 An upper bound for $2^{k+\ell} - a_{k+1}$

For an effective theoretical upper bound for $2^{k+\ell} - a_{k+1}$, a lower bound for d_{k+1} that is exponential in k is sufficient. Computational evidence suggests that d_{k+1} grows exponentially with increasing k. From Lemma 3 we find that $z_{1,k}$ is a non-decreasing function of k, and $d_{k+1} \ge z_{1,k}$. The next Lemmas 4, 5, 6, and 7 supply an exponential lower bound for d_{k+1} . **Lemma 4.** Consider a recurring sequence $\{Z_j\}$ for $j \ge 1$ defined by

$$Z_{j+1} = \frac{Z_j}{2} + Z_{j-1} \tag{22}$$

with initial conditions $Z_0, Z_1 \in \mathbb{Z}_+$. Suppose that for $j = 0, \ldots, k \ Z_k \in \mathbb{Z}_+$. Then $4^{\lfloor \frac{k}{2} \rfloor} \leq 10(\max(Z_0, Z_1))^2$.

Proof. Let $\alpha = \frac{1+\sqrt{17}}{4}$, $\beta = \frac{1-\sqrt{17}}{4}$ be the roots of the characteristic equation $x^2 - \frac{x}{2} - 1 = 0$. Then the solution of Equation (22) is

$$Z_j = \frac{2}{\sqrt{17}} ((Z_1 - \beta Z_0)\alpha^j + (\alpha Z_0 - Z_1)\beta^j).$$
(23)

Since $Z_k \in \mathbb{Z}, \sqrt{17}Z_k \in \mathbb{Z}(\frac{1+\sqrt{17}}{2})$, we find

$$2^{k}\sqrt{17}Z_{k} = 2\left(\left(Z_{1} - \beta Z_{0}\right)\left(\frac{1 + \sqrt{17}}{2}\right)^{k} + \left(\alpha Z_{0} - Z_{1}\right)\left(1 - \frac{\sqrt{17}}{2}\right)^{k}\right).$$
 (24)

Both sides of this equation represent a quadratic integer in $\mathbb{Z}(\frac{1+\sqrt{17}}{2})$, so we have

$$2^{k} \mid 2((Z_{1} - \beta Z_{0}) \left(\frac{1 + \sqrt{17}}{2}\right)^{k} + (\alpha Z_{0} - Z_{1}) \left(1 - \frac{\sqrt{17}}{2}\right)^{k} \right).$$
(25)

Further we have $(\frac{1+\sqrt{17}}{2}\frac{1-\sqrt{17}}{2})^{\lfloor\frac{k}{2}\rfloor} = (-4)^{\lfloor\frac{k}{2}\rfloor} | 2^k$. Note that $\mathbb{Z}(\frac{1+\sqrt{17}}{2})$ is a unique (Euclidean) factorization domain [6], and that $(\frac{1+\sqrt{17}}{2}, \frac{1-\sqrt{17}}{2}) = 1$. As a consequence we have

$$\left(\frac{1+\sqrt{17}}{2}\right)^{\lfloor\frac{k}{2}\rfloor} \mid 2^k \mid 2(\alpha Z_0 - Z_1).$$
(26)

Computing norms in $\mathbb{Z}(\frac{1+\sqrt{17}}{2})$, we find ($\|.\|$ denotes the absolute value)

$$4^{\lfloor \frac{k}{2} \rfloor} = \left\| N(\frac{1+\sqrt{17}}{2}) \right\|^{\lfloor \frac{k}{2} \rfloor}$$

$$\leq \|2N(\alpha Z_0 - Z_1)\|$$

$$= \| - 4Z_0^2 - 2Z_0 Z_1 + 4Z_1^2 \|$$

$$\leq 10(\max(Z_0, Z_1))^2.$$
(27)

This completes the proof.

Lemma 5. Let $y_{j,k}, z_{j,k}, d_k$ be defined as in Equations (11) and further. Then $y_{j,j} < 2^{2j}, z_{j,j} < 2^{2j}$ for $2 \le j \le k + 1$.

Proof. The proof is by induction. First part is for $y_{j,j}$. For j = 2 $y_{j-1,j} = y_{1,2} = 4 < 2^3$, and $y_{j,j} = y_{2,2} = 10 < 2^4$. Assume that $y_{j-1,j} < 2^{2j-1}$, $y_{j,j} < 2^{2j}$ for some $j \ge 2$.

Using the appropriate recurrence relation from Equations (11) and further, we find

$$y_{j+1,j} = \frac{y_{j,j} + 2y_{j-1,j}}{2} < \frac{2^{2j} + 2 \cdot 2^{2j-1}}{2} = 2^{2j},$$

$$y_{j,j+1} = 2y_{j,j} < 2^{2j+1},$$

$$y_{j+1,j+1} = 2y_{j+1,j} < 2^{2j+1} < 2^{2j+2}.$$

The second part is for $z_{j,j}$, and uses the result for $y_{i,j}$. For j = 2, $z_{j-1,j} = z_{1,2} = 1 < 2^3$, and $z_{j,j} = z_{2,2} = 3 < 2^4$. Assume that $z_{j-1,j} < 2^{2j-1}$, $z_{j,j} < 2^{2j}$ for some $j \ge 2$. Using the appropriate recurrence relation from Equations (11) and further, we find

$$z_{j+1,j} = \frac{z_{j,j} + 2z_{j-1,j} + 1}{2} < \frac{2^{2j} + 2^{2j} + 1}{2} < 2^{2j+1}.$$

The worst case for $z_{j,j+1}, z_{j+1,j+1}$ is $z_{j+1,j} \equiv 0 \pmod{2}$. Consequently

$$z_{j,j+1} \le y_{j,j} + z_{j,j} < 2^{2j+1},$$

and

$$z_{j+1,j+1} \le y_{j+1,j} + z_{j+1,j} < 2^{2j} + 2^{2j+1} < 2^{2j+2}.$$

This completes the proof.

We now assume that indices 1 < i < k exist such that $z_{k+1,k}$ is even, $z_{k,k-1} \dots z_{i+2,i+1}$ are odd, and $z_{i+1,1}$ is even. Then (using the appropriate recurrence relation) we have

$z_{k+1,k} \equiv 0$	$d_{k+1} = z_{1,k}$	$z_{1,k+1} = y_{1,k} + z_{1,k}$	•••	$z_{k+1,k+1} = y_{k+1,k} + z_{k+1,k}$
$z_{k,k-1} \equiv 1$	$d_k = y_{1,k-1} + z_{1,k-1}$	$z_{1,k} = z_{1,k-1}$	$z_{k-1,k} = z_{k-1,k-1}$	$z_{k,k} = z_{k,k-1}$
$z_{k-1,k-2} \equiv 1$	$d_{k-1} = y_{1,k-2} + z_{1,k-2}$	$z_{1,k-1} = z_{1,k-2}$	$z_{k-2,k-1} = z_{k-2,k-2}$	$z_{k-1,k-1} = z_{k-1,k-2}$
$z_{k-2,k-3} \equiv 1$	$d_{k-2} = y_{1,k-3} + z_{1,k-3}$	$z_{1,k-2} = z_{1,k-3}$	$z_{k-3,k-2} = z_{k-3,k-3}$	$z_{k-2,k-2} = z_{k-2,k-3}$
$z_{i+2,i+1} \equiv 1$	$d_{i+2} = y_{1,i+1} + z_{1,i+1}$	$z_{1,i+2} = z_{1,i+1}$		$z_{i+2,i+2} = z_{i+2,i+1}$
$z_{i+1,i} \equiv 0$	$d_{i+1} = z_{1,i}$	$z_{1,i+1} = y_{1,i} + z_{1,i}$	•••	$z_{i+1,i+1} = y_{i+1,i} + z_{i+1,i}$

From the last column we find that $z_{j+1,j+1} = z_{j+1,j}$ for $i+1 \le j \le k-1$, and the combination of the last two columns shows $z_{j+1,j} = z_{j+1,j+2}$ for $i+1 \le j \le k-2$. Putting $Z_j = z_{j,j} + 1$ we find for $j = i+3 \dots k-1$ the recurrence relation

$$Z_{j+1} = \frac{Z_j}{2} + Z_{j-1} \tag{28}$$

with initial conditions $Z_{i+1} = z_{i+1,i+1} + 1$, $Z_{i+2} = z_{i+2,i+2} + 1$.

From the second and the third column we find

$$d_{k+1} = z_{1,k} = z_{1,k-1} = \dots = z_{1,i+1} = y_{1,i} + z_{1,i} > y_{1,i} = 2^i$$
(29)

Lemma 6. $d_{k+1} > 2^{0.25k-3.75}$.

Proof. We apply Lemmas 4 and 5 to find an inequality relation between k and i

$$2^{k-1} \le 4^{\lfloor \frac{k}{2} \rfloor} \le 10(\max(Z_{i+1}, Z_{i+2}))^2 \le 10.2^{10}.2^{4i} < 2^{4i+14}.$$
(30)

Hence $i(k) > \frac{k-15}{4}$. Substituting this lower bound in Equation (29) supplies the required exponential lower bound for d_{k+1} as a function of $k \ge 1$

Note that this lower bound is valid under the assumption that indices 1 < i < k exist such that $z_{k+1,k}$ is even, $z_{k,k-1} \dots z_{i+2,i+1}$ are odd, and $z_{i+1,1}$ is even. Lemma 4 shows that for every two positive integers Z_0, Z_1 the sequence of integer terms $\{Z_j\}$ is finite. The next lemma shows that the last integer term must be odd.

Lemma 7. Consider a recurring sequence $\{Z_j\}$ for $j \ge 1$ defined by

$$Z_{j+1} = \frac{Z_j}{2} + Z_{j-1} \tag{31}$$

with initial conditions Z_0 , and $Z_1 \equiv 0 \pmod{2} \in \mathbb{Z}_+$. Then there exists an index $k \geq 2$ with $Z_k \equiv 1 \pmod{2}$.

Proof. A consequence of Lemma 4 is the existence of a maximal k with $Z_j \in \mathbb{Z}_+$ for $0 \le j \le k$. Hence $Z_{k+1} > 0 \notin \mathbb{Z}_+$, and this requires that $Z_k \equiv 1 \pmod{2}$.

We now consider the sequence $(z_{3,2}, z_{4,3}, ...)$. $z_{3,2} = 3$, and $z_{4,3} = 5$. By definition this sequence consists of subsequences of odd, and even $z_{j+1,j}$. Lemma 7 proves the existence of a (smallest) k with $z_{k,k-1}$ is odd, and $z_{k+1,k}$ is even. We now distinguish two cases:

- Case 1. All subsequences of even $z_{j+1,j}$ are finite. Then the assumption for the proof of the lower bound for d_{k+1} is satisfied and Lemma 6 is true for all j.
- Case 2. There exists a infinite subsequence of even $z_{j+1,j}$. Then there is a maximal k such that $z_{k,k-1}$ is odd, and $z_{k+1,k}$ is even. For the next number we find

$$d_{k+2} = z_{1,k+1} = y_{1,k} + z_{1,k} = y_{1,k} + d_{k+1} > 2^k + 2^{0.25k-3.75} > 2^{0.25(k+1)-3.75}$$
(32)

By induction Lemma 6 is true for $j \ge k + 1$, and consequently true for all j.

We conclude that Lemma 6 is true for every sequence $(z_{3,2}, z_{4,3}, ...)$. From Lemma 6 and Equations (21), (8) we find the upper bound

$$0 < 2^{k+\ell} - a_{k+1} < 17.232 \cdot \left(\frac{1+\sqrt{17}}{2}\right)^{0.816 \cdot k}.$$
(33)

and boundaries for $\ell(k)$.

Corollary 8. If a k, ℓ 1-cycle exists, then there exists a k-dependent minimal, and maximal value for ℓ .

Lemma 33 supplies for $|(k + \ell) \log 2 + \log \sqrt{17} - (k + 2) \log \frac{1 + \sqrt{17}}{2}|$ a negative exponential upper bound in k. Then Corollary 8 supplies a negative exponential upper bound in the cycle length $k + \ell$. To find an upper bound for the cycle length we need an appropriate lower bound from transcendental number theory.

3.3 An upper bound for $|(k + \ell) \log 2 + \log \sqrt{17} - (k + 2) \log \frac{1 + \sqrt{17}}{2}|$

Inserting Equation (7) in Equation (33) results in a lower bound for negative values, and an upper bound for positive values

$$-\frac{1}{\sqrt{17}} \left(\frac{1-\sqrt{17}}{2}\right)^{k+2} < 2^{k+\ell} - \frac{1}{\sqrt{17}} \left(\frac{1+\sqrt{17}}{2}\right)^{k+2},\tag{34}$$

and

$$2^{k+\ell} - \frac{1}{\sqrt{17}} \left(\frac{1+\sqrt{17}}{2}\right)^{k+2} < 17.233 \cdot \left(\frac{1+\sqrt{17}}{2}\right)^{0.816k} - \frac{1}{\sqrt{17}} \left(\frac{1-\sqrt{17}}{2}\right)^{k+2}.$$
 (35)

For odd, and even $k -\frac{1}{\sqrt{17}} \left(\frac{1-\sqrt{17}}{2}\right)^{k+2} \le \frac{1}{\sqrt{17}} \left(\frac{\sqrt{17}-1}{2}\right)^{k+2}$. Inserting this in Equations (34) and (35), we have after multiplication with $\sqrt{17} \left(\frac{2}{1+\sqrt{17}}\right)^{k+2}$

$$-\left(\frac{1-\sqrt{17}}{1+\sqrt{17}}\right)^{k+2} < 2^{k+\ell}\sqrt{17}\left(\frac{2}{1+\sqrt{17}}\right)^{k+2} - 1 < 17.233 \cdot \sqrt{17}\frac{\left(\frac{2}{1+\sqrt{17}}\right)^2}{\left(\frac{1+\sqrt{17}}{2}\right)^{0.184k}} + \left(\frac{\sqrt{17}-1}{\sqrt{17}+1}\right)^{k+2} (36)$$

Using $(\frac{1+\sqrt{17}}{2})^{0.184} > 1.18$, and $\frac{\sqrt{17}+1}{\sqrt{17}-1} > 1.18$ we find

$$1 - \frac{1}{1.18^{k+2}} < 2^{k+\ell} \sqrt{17} \left(\frac{2}{1+\sqrt{17}}\right)^{k+2} < 1 + \frac{12}{1.18^{k+2}}.$$
(37)

For $k \ge 1 \log(1 - \frac{1}{1.18^{k+2}}) > -\frac{3}{1.18^{k+2}}$. Taking logs leads to

$$-\frac{12}{1.18^k} < -\frac{3}{1.18^{k+2}} < (k+\ell)\log 2 + \log\sqrt{17} - (k+2)\log\frac{1+\sqrt{17}}{2} < \frac{12}{1.18^k}.$$
 (38)

If $k \ge 16$ then $\frac{12}{1.18^k} < 1$. From these bounds we find bounds for ℓ as a function of $k \ge 16$

$$0.357k + 0.310 < \ell < 0.357k + 2.113.$$
(39)

3.4 A lower bound for $|(k+\ell) \log 2 + \log \sqrt{17} - (k+2) \log \frac{1+\sqrt{17}}{2}|$

For a lower bound the theorem of Rhin's [13] cannot be used since it applies to a linear form in two logarithms. Matveev [10] has developed a lower bound for a linear form in three logarithms. Mignotte [12] (Proposition 5.2) has improved Matveev's lower bound. Evertse [5] has proved from Matveev's approach:

Lemma 9. Let $\gamma_1 \ldots \gamma_n$ be algebraic numbers from a field \mathbb{K} of degree D, distinct from 0 and 1, with height $h(\gamma_1) \ldots h(\gamma_n)$. Take $\log \gamma_1 \ldots \log \gamma_n$ to be any determination of their logarithms. Let $b_1 \ldots b_n$ be non-zero integers such that $\Lambda = |b_1 \log \gamma_1 + \ldots + b_n \log \gamma_n|$. Let $A_1 \ldots A_n$ be real numbers > 1 with $\log A_i \ge \max(Dh(\gamma_i), |\log \gamma_i|, 0.16)$. Set $B = \max(|b_i|)$. Then $\log |\Lambda| > -2 \cdot 30^{n+4} \cdot (n+1)^6 \cdot D^2 \cdot \log(eD) \cdot \log A_1 \cdots \cdot \log A_n \cdot \log(eB)$.

We use Evertse's lemma to derive a lower bound for $|(k+\ell)\log 2 + \log \sqrt{17} - (k+2)\log \frac{1+\sqrt{17}}{2}|$. Note that n = 3, D = 2, $\log A_1 = 4$, $\log A_2 = 34$, $\log A_3 = 8$, $B = k + \ell$. This results in

$$|(k+\ell)\log 2 + \log\sqrt{17} - (k+2)\log\frac{1+\sqrt{17}}{2}| > (e(k+\ell))^{-1.32\cdot 10^{18}}$$
(40)

3.5 An upper bound for k

Confronting the bounds from Equations (38) with the bounds from Equation (40) results in the upper bound $k < k_{\text{max}} = 3.89 \cdot 10^{20}$. We can now apply a reduction technique based on a generalized lemma of Baker and Davenport [4]

Lemma 10. Let $A > 0, B > 1, \kappa > 0, \mu > 0 \in \mathbb{R}$. Suppose $M \in \mathbb{N}$. Let $\frac{p}{q}$ be a convergent of the continued fraction expansion of κ such that q > 6M, and let $\epsilon = \|\mu q\| - M \|\kappa q\|$, where $\|.\|$ denotes the distance to the nearest integer.

1. If $\epsilon > 0$ then there is no solution in integers m, n of the inequality

$$0 < m\kappa - n + \mu < A \cdot B^{-m} \tag{41}$$

with $\frac{\log(\frac{Aq}{\epsilon})}{\log B} \le m \le M$.

2. If $\epsilon < 0$, let $r = \lfloor \mu q + \frac{1}{2} \rfloor$. If p - q + r = 0, then there is no solution in integers m, n of the Inequality (41) with $\max\left(\frac{\log(3Aq)}{\log B}, 1\right) \le m \le M$.

From Equation (39) we have $k > \frac{k + \ell - 2.113}{1.357}$, which implies

$$1.18^{\frac{2.113}{1.357}} \cdot (1.118^{\frac{1}{1.357}})^{-(k+\ell)} > 1.18^{-k}.$$

Using this, and dividing by $\log \frac{1+\sqrt{17}}{2}$, we can rewrite Equation (38) in the format of Equation (41)

$$-\frac{3}{\log\frac{1+\sqrt{17}}{2}} \cdot 1.18^{-k} < (k+\ell)\frac{\log 2}{\log\frac{1+\sqrt{17}}{2}} + \frac{\log\sqrt{17}}{\log\frac{1+\sqrt{17}}{2}} - (k+2) < \frac{1}{\log\frac{1+\sqrt{17}}{2}} \cdot 12 \cdot 1.18^{\frac{2.113}{1.357}} \cdot (1.118^{\frac{1}{1.357}})^{-(k+\ell)}$$

i.e.,

 $-4.441 \cdot (1.18)^{-k} < (k+\ell) \cdot 0.7369 + 1.506 - (k+2) < 16.5081 \cdot 1.129726^{-(k+\ell)}.$ (42)

We distinguish two cases:

Case 1. $0 < (k + \ell) \cdot 0.7369 + 1.506 - (k + 2) < 16.5081 \cdot 1.129726^{-(k+\ell)}$. We now can apply Lemma 10 with $\kappa = 0.7369$, $\mu = 1.506$, A = 16.5081, B = 1.12972. From k_{\max} , and Equation (39) we find $k + \ell < 6.224 \cdot 10^{20} = M$. The continued fraction of κ is $(0, 1, 2, 1, 4, 40, 1, 6, 18, 2, 4, 3, 1, 1, 2, 8, 2, 1, 1, 1, 4, 1, 4, 1, 2, 1, 1, 7, 4, 3, 1, 1, 2, 6, 1, 8, 1, 1, 4, 12, 1, 1, 1, 1, 3, 1, 1, 1, 3, 19, 3, 1, 81, 1, 24, 1, 2, 4, 2083, 4, ...). The first convergent <math>\frac{p_n}{q_n}$ with $q_n > 6 \cdot M$ is $q_{49} = 5.797 \cdot 10^{21}$. For $q = q_{49}$, $\epsilon = 0.034 > 0$, and $\frac{\log(\frac{Aq}{\epsilon})}{\log B} = 461.5$. Then Lemma 10 states that $k + \ell \leq 461$. Subsequently we applied Lemma 10 with M = 461 to find $k + \ell \leq 128$.

Case 2. $-4.441 \cdot (1.18)^{-k} < (k + \ell) \cdot 0.7369 + 1.506 - (k + 2) < 0$. After division by κ , and redefining μ we find in this case $0 < 1.357 \cdot k + 0.6703 - (k + \ell) < 6.027 \cdot (1.18)^{-k}$, and now again Lemma 10 is applicable. Doing a similar calculation we found (initially with $M = k_{\text{max}}$) that $k \le 331$, and through repetition that $k \le 86$.

Using Equation (39), we find from combining these cases the following corollary.

Corollary 11. If the higher-order Collatz sequence of Equation (1) has a 1-cycle, then $k \leq 94$.

3.6 Non-existence of 1-cycles

Theorem 12. The higher-order Collatz sequence of Equation (1) has no 1-cycles.

Proof. Corollary 11 requires that $k \le 94$. We checked numerically that if $2 \le k \le 100$, for all ℓ values that satisfy Equation (39), then Equation (9) has no solution $x_0 \in \mathbb{Z}_+$.

This proves Theorem 2(2).

3.7 Existence of *m*-cycles

We found the following m > 1-cycles for start values $x_1 < 10^6$, $x_0 = 2x_1$ (Table 1).

# cycles	# odd elem.	# even elem.	m	x_{\min}	$x_{ m max}$
11	5	4	2	1	8
	6	5	4	77	273
	8	5	3	157	1 004
	10	5	2	$3\ 185$	$50\ 960$
	10	5	2	$4\ 017$	32 136
	18	14	10	$11\ 037$	$142\ 868$
	11	7	4	$11\ 687$	$166\ 213$
	11	7	4	$12\ 711$	$144\ 620$
	11	7	4	$12\ 817$	$116\ 660$
	11	7	4	13 847	177 240
	11	7	4	$15\ 377$	139 960

Table 1. m > 1-cycles for start values $x_1 < 10^6$, $x_0 = 2x_1$

Note that these solutions (k, ℓ) do not refer to convergents to $\log_2 3$.

4 1-cycles for higher-order Collatz sequence with q > 1

For Equation (3) the same difference equation, and initial conditions for a_n apply. For b_n we now have $b_{n+1} = b_n + 4b_{n-1} + q \cdot 2^n$, $b_0 = b_1 = 0$, with the solution

$$b_n = q \left[\frac{\sqrt{17} + 3}{2\sqrt{17}} \left(\frac{1 + \sqrt{17}}{2}\right)^n + \frac{\sqrt{17} - 3}{2\sqrt{17}} \left(\frac{1 - \sqrt{17}}{2}\right)^n - 2^n\right].$$
 (43)

With this new expression for b_n the expressions for x_n (Equation (6)), and for x_0 (Equation (9)), and the kernel equation (21) are valid. Lemma 3 is valid for q = 1. For q > 1 the initial conditions for $z_{1,2}$ and $z_{2,2}$ change, i.e., if $q \equiv 1 \pmod{4}$ then $z_{1,2} = 1$, $z_{2,2} = \frac{q+5}{2}$, and if $q \equiv 3 \pmod{4}$ then $z_{1,2} = 1$, $z_{2,2} = \frac{q+15}{2}$. So d_{k+1} is a function of q as shown in the Table 2 below. We take $q \in \{3, 5, 7, 11, 13, 17, 19\}$.

q	d_2	d_3	d_4	d_5	d_6	d_7	d_8	d_9	d_{10}
3	1	7	11	3	19	115	51	435	691
5	3	1	13	5	53	21	85	213	469
7	1	3	15	7	23	55	119	503	247
11	1	7	3	11	27	123	187	59	827
13	3	1	5	13	61	29	221	349	605
17	3	5	9	17	1	97	33	417	161
19	1	7	11	19	35	3	67	195	963

Table 2. Nonconstant term $d_{k+1}(q)$ for different q values

Note that $d_5(q) = q$ refers to the sequence of q-multiples of (1, 3, 3, 5, 6). Lemma 5 uses the definition $Z_j = z_{jj} + 1$, which now becomes $Z_j = z_{jj} + q$. The upper bound $z_{jj} < 2^{2j}$ then requires a $j_{\min}(q) \ge 3$.

Lemma 6 remains valid because the lower bound in Equation (29) is independent of $z_{1,i}$.

The overall effect of q > 1 is an extra factor q in Equation (6), and in the bounds of Equation (38) that determines k_{\max} . We calculated for the worst case q = 19 that if $k \ge 33$ then $\frac{12 \cdot q}{1.18^k} < 1$, and Equation (39) remains valid. The effect of "small" q on k_{\max} is negligible, and this implies that the reduced upper bound for k of Corollary 11 applies for $q \in \{3, 5, 7, 11, 13, 17, 19\}$. For larger values of q Equation (38) remains applicable. With Equation (39) an upper bound for the cycle length as a function of m is given.

This proves Theorem 2 (1). (See Section 6, Remark 2).

Theorem 13. *The higher-order Collatz sequence of Equation (3) has for* $q \in \{3, 5, 7, 11, 13, 17, 19\}$ *the following* 1*-cycles: for* q = 3 ($x_1 = 1, 11$), q = 7 ($x_1 = 3$), q = 11 ($x_1 = 1$).

Proof. Corollary 11 requires that $k \leq 94$. We checked numerically that if $2 \leq k \leq 100$ for all ℓ values that satisfy Equation (39), Equation (3) has no other solutions $x_0 \in \mathbb{Z}_+$ than those mentioned in the theorem.

This proves Theorem 2 (3, 4). Apart from trivial *m*-cycles (*q*-multiples) we found the following *m*-cycles for start values $x_1 < 10^6$, $x_0 = 2x_1$ (Table 3).

q	$\# \not\equiv q$ cycles	# odd elem.	# even elem.	m	$x_{ m min}$	$x_{ m max}$
3	3	1	2	1	1	4
		3	2	1	11	44
		3	4	3	6	244
5	0					
7	2	2	2	1	3	12
		2	3	2	9	36
11	6	1	3	1	1	8
		11	11	6	3	103
		8	7	5	2557	13 076
		25	18	12	2 107	24 184
		8	7	5	2 499	11 103
		8	7	5	$2\ 307$	13 103
13	7	2	4	2	3	24
		5	5	3	19	152
		5	5	3	21	124
		8	7	5	2 323	$16\;509$
		8	7	5	2 523	17 924
		8	7	5	2 603	20 824
		8	7	5	2 921	18 684
17	2	15	12	7	29	496
		18	16	11	13 383	377 818
19	58	10	8	3	3	127
					•••	•••
		11	7	4	$250\ 167$	$4\ 002\ 672$

Table 3. *m*-cycles for start values $x_1 < 10^6$, $x_0 = 2x_1$ for different *q* values

This proves Theorem 2 (5). For $19 < q \le 997$, 1-cycles are exceptional. We found numerically (without a theoretical upper bound k_{max}) a 1-cycle for q = 23, 59, 71, 191, 227, 251, 331, 503, 883. This proves Theorem 2 (6).

5 On proving the existence of *m*-cycles

The approach for finding 1-cycles can be generalized to *m*-cycles. A necessary and sufficient condition for the existence of an *m*-cycle is the existence of a solution $x_i \in \mathbb{Z}_+$ of the system (for q = 1):

$$\begin{pmatrix} -a_{k_{1}+1} & 2^{k_{1}+\ell_{1}} & & \\ & -a_{k_{2}+1} & 2^{k_{2}+\ell_{2}} & \\ & & \ddots & \\ & & & 2^{k_{m}+\ell_{m}} & -a_{k_{m}+1} \end{pmatrix} \begin{pmatrix} x_{0} & & \\ x_{k_{1}+\ell_{1}} & \\ \vdots & \\ & x_{k_{m}+\ell_{m}} & -a_{k_{m}+1} \end{pmatrix} = \begin{pmatrix} b_{k_{1}+1} & & \\ b_{k_{2}+1} & & \\ \vdots & & \\ & b_{k_{m}+1} & \end{pmatrix},$$
(44)

where k_i , ℓ_i , (i = 1, ..., m) is the length of the *i*-th pair of subsequences, and a_i , b_i are defined by Equations (7), (8). For example, for m = 2, $k_1 = 4$, $\ell_1 = 1$, $k_2 = 1$, $\ell_2 = 3$ we have the solution $x_0 = 2$, $x_5 = 6$ for the 2-cycle ($(x_0 = 2)$, 1, 3, 3, 5, 6, 3, 8, 4, 2). Let $K = \sum_{i=1}^{m} k_i$, $L = \sum_{i=1}^{m} \ell_i$. Then a lower and an upper bound must be found for $2^{K+L} - \prod_{i=1}^{m} a_{k_i+1}$. In principle, for each d_{k_i+1} a lower bound can be found, since the beginning of the next odd subsequence follows from the foregoing pair of subsequences. We leave this for further research.

6 Remarks

Remark 1. For the original Collatz sequence, odd numbers form an increasing subsequence, and even numbers form a decreasing subsequence. An *m*-cycle is defined as a cycle with *m* (even) local maxima and *m* (odd) local minima. For higher-order Collatz sequences there can exist odd maxima that can "overrule" even maxima. As an example, for q = 11 there exists the cycle (6, 3, 13, 15, 26, 13, 38, 19, 53, 51, 84, 42, 21, 58, 29, 78, 103, 96, 48, 24, 12) with 5 even local maxima and 2 odd local maxima. Following our definition m = 6, so the definition of *m*-cycles for the original Collatz sequence must be amended.

Remark 2. The proof of Theorem 2 (1) differs from the proof for the original Collatz sequence in [14]. The expression for the starting odd numbers requires a nonconstant term d_{k+1} , leading to a different kernel equation (21) with a non-trivial upper bound analysis. For the resulting linear log form, the simple upper bound reduction based on convergents is not applicable.

Remark 3. A natural generalization is to apply $x_{n+1} = \frac{ax_n + (3-a)x_{n-1} + q}{2}$ if x_n is odd, with a an odd number. Then an analysis for a new d_{k+1} is required. Also the number 17, with the property that $\mathbb{Z}(\frac{1+\sqrt{17}}{2})$ is a unique factorization domain, no longer holds. So an amended Lemma 4 is required. Computational evidence suggests that in such cases the number of m-cycles is finite. We leave this for further research.

References

- [1] Baker, A. (1968). Linear forms in the logarithms of algebraic numbers IV. *Mathematika*, 15, 204–216.
- [2] Brox, B. (2000). Collatz cycles with few descents. Acta Arithmetica, 92, 181–88.

- [3] Davison, J. L. (1976). Some comments on an Iteration problem. *Proceedings of the 6th Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Manitoba,* 155–159, *Congressus Numerantium XVII, Utilitas Math., Winnipeg, MN*, 1977.
- [4] Dujella, A., & Pethő, A. (1998). Generalization of a theorem of Baker and Davenport. *The Quarterly Journal of Mathematics*, 49(3), 291–306.
- [5] Evertse, J. H. (2007). *Linear Forms in Logarithms I: Complex and p-adic*. Available online at: http://www.math.leidenuniv.nl/~evertse/linearforms.pdf.
- [6] Hardy, G. H., & Wright, E. M. (1981). *An Introduction to the Theory of Numbers*, 5th ed., Oxford University Press.
- [7] Lagarias, J. C. (2011). *The* 3x + 1 *Problem: An Annotated Bibliography*. For latest results see: http://arxiv.org/abs/math.NT/0309224.
- [8] Laurent, M., Mignotte, M., & Nesterenko, Y. (1995). Formes linéaires en deux logarithmes et déterminants d'interpolation. *Journal of Number Theory*, 55, 285–321.
- [9] Luca, F. (2005). On the non-trivial cycles in Collatz's problem. *SUT Journal of Mathematics*, 41(1), 31–41.
- [10] Matveev, E. M. (1998). An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Part I. *Izvestia: Mathematics*, 62(4), 723–772.
- [11] Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Part II. *Izvestia: Mathematics*, 64(6), 125–180.
- [12] Mignotte, M. (2008). A kit on linear forms in three logarithms. Available online at: http: //irma.math.unistra.fr/~bugeaud/travaux/kit.pdf.
- [13] Rhin, G. (1987). Approximants de Padé et mesures effectives d'irrationalité. Progress in Mathematics, 71, 155–164.
- [14] Simons, J. L., & de Weger, B. M. M. (2005). Theoretical and computational bounds for m-cycles of the 3n + 1 problem. Acta Arithmetica, 117.1, 51–70. For latest results see: http://www.win.tue.nl/~bdeweger/research.html.
- [15] Steiner, R. P. (1978). A Theorem on the Syracuse Problem. *Proceeding of 7th Manitoba Conference on Numerical Mathematics 1977*, Winnipeg, 553–559.