Helmut Prodinger
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 1, Pages 41–47
DOI: 10.7546/nntdm.2022.28.1.41-47
Full paper (PDF, 191 Kb)
Details
Authors and affiliations
Helmut Prodinger
Department of Mathematics, University of Stellenbosch
Stellenbosch 7602, South Africa
Abstract
The amplitude of Motzkin paths was recently introduced, which is basically twice the height. We analyze this parameter using generating functions.
Keywords
- Motzkin paths
- Height
- Amplitude
- Generating functions
- Asymptotics
2020 Mathematics Subject Classification
- 05A15
References
- Comtet, L. (1974). Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing Co., Dordrecht, Enlarged edition.
- Courtiel, J., Price, A. E., & Marcovici, I. (2021). Bijections between walks inside a
triangular domain and Motzkin paths of bounded amplitude. The Electronic Journal of Combinatorics, 28(2), #P2.6h.
- Flajolet, P., Gourdon, X., & Dumas, P. (1995). Mellin transforms and asymptotics:
Harmonic sums. Theoretical Computer Science, 144, 3–58.
- Flajolet, P., & Odlyzko, A. (1990). Singularity analysis of generating functions. SIAM Journal of Discrete Mathematics, 3(2), 216–240.
- Heuberger, C., Prodinger, H., & Wagner, S. (2016). The height of multiple edge plane trees. Aequationes Mathematicae, 90(3), 625–645.
- Mortimer, P. R. G., & Prellberg, T. (2015). On the number of walks in a triangular domain. Electronic Journal of Combinatorics, 22(1), P1.64.
- Prodinger, H. (1980). The average height of a stack where three operations are allowed and some related problems. Journal of Combinatorics, Information & System Sciences, 5(4), 287–304.
- Sloane, N. J. A. (2018). The on-line encyclopedia of integer sequences. Notices of the American Mathematical Society, 65(9), 1062–1074.
Manuscript history
- Received: 21 April 2021
- Revised: 16 December 2022
- Accepted: 25 January 2022
- Online First: 7 February 2022
Related papers
Cite this paper
Prodinger, H. (2022). The amplitude of Motzkin paths. Notes on Number Theory and Discrete Mathematics, 28(1), 41-47, DOI: 10.7546/nntdm.2022.28.1.41-47.