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1 Introduction

A Motzkin path consists of up-steps, down-steps, and horizontal steps, see sequence A091965
in [8] and the references given there. As Dyck paths, they start at the origin and end, after n steps
again at the x-axis, but are not allowed to go below the x-axis. The height of a Motzkin path is
the highest y-coordinate that the path reaches. The average height of such random paths of length
n was considered in an early paper [7], it is asymptotically given by

√
πn

3
.

In the recent paper [2] (following the earlier paper [6]) an interesting new concept was
introduced: the amplitude. It is basically twice the height, but with a twist.

If there exists a horizontal step on level h, which is the height, the amplitude is 2h + 1,
otherwise it is 2h. To clarify the concept, we created a list (Table 1) of all 9 Motzkin paths of
length 4 with height and amplitude given.

The goal of this paper is to investigate this new parameter; in the next section, generating
functions will be given, in the following section explicit enumerations, involving trinomial
coefficients

(
n,3
k

)
= [tk](1 + t + t2)n (notation following Comtet’s book [1]). In the last section,

the intuitive result that the average amplitude is about twice the average height, is confirmed, and
then it will be shown, that, asymptotically, there are about as many Motzkin paths with/without
horizontal steps on the maximal level.
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Motzkin path Horizontal on maximal level Height Amplitude
Yes 0 1

No 1 2

No 1 2

Yes 1 3

Yes 1 3

Yes 1 3

No 1 2

No 1 2

No 2 4

Table 1. All 9 Motzkin paths of length 4.

2 Generating functions

Let
M≤h(z) =

∑
n≥0

[number of Motzkin paths of length n and height ≤ h]zn.

For the computation, let fi = fi(z) be the generating function of Motzkin-like paths, bounded by
height h, but ending at level i. Distinguishing the last step, we get

f0 = 1 + zf0 + zf1, fi = zfi−1 + zfi + zfi+1 for 0 < i < h, fh = zfh−1 + zfh.

This system is best written in matrix form:
1− z −z 0 . . .

−z 1− z −z 0 . . .

0 −z 1− z −z 0 . . .
. . . . . . . . .

−z 1− z




f0
f1
f2
...
fh

 =


1

0

0
...
0


Let Dn be the determinant of the system matrix, with n rows and columns. Using Cramer’s rule
to solve a linear system, one finds

M≤h(z) = f0 =
Dh

Dh+1

.

Expanding the determinant along the first row, we get the recursionDn = (1−z)Dn−1−z2Dn−2,
and D1 = 1− z, D0 = 1. Solving,

Dn =
1√

1− 2z − 3z2

[(
1− z +

√
1− 2z − 3z2

2

)n+1

−
(

1− z −
√

1− 2z − 3z2

2

)n+1]
.

If one deals with enumeration of Motzkin-like objects, the substitution z =
v

1 + v + v2
makes the

expressions prettier:
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Dn =
1

1− v2
1− v2n+2

(1 + v + v2)n

and further

M≤h(z) = f0 =
Dh

Dh+1

= (1 + v + v2)
1− v2h+2

1− v2h+4
.

This substitution was used for the first time in [7]. It might be motivated by using the
Lagrange inversion formula for solving the equation for Motzkin numbers: Let M = 1 + y, then
y = z(1 + y + y2).

Now let N≤h(z) be the generating function of Motzkin paths of height ≤ h, but where
horizontal steps on level h are forbidden. The system to compute this is quite similar:

1− z −z 0 . . .

−z 1− z −z 0 . . .

0 −z 1− z −z 0 . . .
. . . . . . . . .

−z 1




g0
g1
g2
...
gh

 =


1

0

0
...
0


The only difference in the matrix is the entry in the last row, written in boldface. Let D∗n be the
determinant of this system matrix, with n rows and columns. Again,

N≤h(z) = g0 =
D∗h
D∗h+1

.

Expanding the matrix along the last row, we find

D∗n = Dn−1 − z2Dn−2 =
1

1− v
1− v2n+1

(1 + v + v2)n

and

N≤h(z) = g0 =
D∗h
D∗h+1

= (1 + v + v2)
1− v2h+1

1− v2h+3
.

Now let us consider
M≤h(z)−N≤h(z).

There is obviously a lot of cancellation going on. The objects which are still counted, have height
of h, and have horizontal steps on level h. That is one of the two quantities that we wanted to
compute, and we get

Horizh(z) = (1 + v + v2)
1− v2h+2

1− v2h+4
− (1 + v + v2)

1− v2h+1

1− v2h+3

= (1 + v + v2)(1− v−2)
[

v2h+4

1− v2h+4
− v2h+3

1− v2h+3

]
.

Similarly, considering N≤h(z) −M≤h−1(z), we find that only objects are counted that have
height = h, and no horizontal steps on level h. Thus

No-Horizh(z) = (1 + v + v2)

[
1− v2h+1

1− v2h+3
− 1− v2h

1− v2h+2

]
= (1 + v + v2)(1− v−2)

[
v2h+3

1− v2h+3
− v2h+2

1− v2h+2

]
.
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As a check, we get

Horizh(z) + No-Horizh(z) = (1 + v + v2)(1− v−2)
[

v2h+4

1− v2h+4
− v2h+2

1− v2h+2

]
= M≤h(z)−M≤h−1(z) = M=h(z).

3 Explicit enumerations

All our generating functions contain the term

(1 + v + v2)(1− v−2) v2h+a

1− v2h+a
= (1 + v + v2)(1− v−2)

∑
k≥1

vk(2h+a)

for various values of a. We show how to compute the coefficient of zn in this. It will be done
using contour integration. The contour is a small circle in the z-plane or v-plane.

[zn](1 + v + v2)(1− v−2) v2h+a

1− v2h+a
=

1

2πi

∮
dz

zn+1
(1 + v + v2)(1− v−2)

∑
k≥1

vk(2h+a)

=
1

2πi

∮
dv(1− v2)

(1 + v + v2)2
(1 + v + v2)n+1

vn+1
(1 + v + v2)(1− v−2)

∑
k≥1

vk(2h+a)

= −
∑
k≥1

[vn+2−k(2h+a)](1− v2)2(1 + v + v2)n

= −
∑
k≥1

[(
n, 3

n+ 2− k(2h+ a)

)
− 2

(
n, 3

n− k(2h+ a)

)
+

(
n, 3

n− 2− k(2h+ a)

)]
.

In this computation, we used the notion of trinomial coefficients:(
n, 3

k

)
= [tk](1 + t+ t2)n.

4 The average amplitude

Here we compute:∑
h≥0

(2h+ 1)Horizh(z) +
∑
h≥1

(2h)No-Horizh(z)

= (1 + v + v2)(1− v−2)
∑
h≥0

(2h+ 1)

[
v2h+4

1− v2h+4
− v2h+3

1− v2h+3

]
+ (1 + v + v2)(1− v−2)

∑
h≥0

(2h)

[
v2h+3

1− v2h+3
− v2h+2

1− v2h+2

]
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= −(1 + v + v2)(1− v−2)
∑
h≥0

v2h+3

1− v2h+3

+ (1 + v + v2)(1− v−2)
∑
h≥0

(2h+ 1)
v2h+4

1− v2h+4

− (1 + v + v2)(1− v−2)
∑
h≥0

(2h+ 2)
v2h+4

1− v2h+4

= −(1 + v + v2)(1− v−2)
∑
h≥0

v2h+3

1− v2h+3
− (1 + v + v2)(1− v−2)

∑
h≥1

v2h+2

1− v2h+2

= −(1 + v + v2)(1− v−2)
∑
h≥0

v2h+1

1− v2h+1
+ (1 + v + v2)(1− v−2) v

1− v

− (1 + v + v2)(1− v−2)
∑
h≥1

v2h

1− v2h
+ (1 + v + v2)(1− v−2) v2

1− v2

= −(1 + v + v2)(1− v−2)
∑
h≥0

v2h+1

1− v2h+1

− (1 + v + v2)(1− v−2)
∑
h≥1

v2h

1− v2h
− (1 + 2v)(1 + v + v2)

v

= −(1 + v + v2)(1− v−2)
∑
h≥1

vh

1− vh
− (1 + 2v)(1 + v + v2)

v
.

To find asymptotics from here, we need the local expansion of this generating function around
v ∼ 1, or, equivalently, z ∼ 1

3
. See [3] for more explanations of how this method works; it

also involves singularity analysis of generating functions [4]. While this combined approach of
Mellin transform and singularity analysis has been used for more than 30 years, we would like to
cite [5], where many technical details have been worked out in a similar instance. For example,
the expansion of the sum that we need is derived there. We combine all the expansions:(

6(1− v) + · · ·
)(
− log(1− v)

1− v
+

γ

1− v
+ · · ·

)
− 9 + 6(1− v) + · · · = −6 log(1− v) + · · ·

Translating this into the z-world means 1− v ∼
√

3
√

1− 3z, and then

[zn]
(
− 6 log(1− v)

)
∼ [zn]

(
− 6 log

√
1− 3z

)
= 3

3n

n
=

3n+1

n
.

The total number of Motzkin paths is

[zn]
1− z −

√
1− 2z − 3z2

2z2
∼ [zn]

(
3− 3

√
3
√

1− 3z
)
∼ 3
√

3
3n

2
√
πn3/2

.

Taking quotients, we get the average amplitude of random Motzkin paths of length n, which is
asymptotic to

2

√
πn

3
.
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This is about twice as much as the average height of random Motzkin paths, which is what we
expected.

Now we consider∑
h≥0

No-Horizh(z) = (1 + v + v2)(1− v−2)
∑
h≥0

[
v2h+3

1− v2h+3
− v2h+2

1− v2h+2

]
= (1 + v + v2)(1− v−2)

∑
h≥1

[
v2h−1

1− v2h−1
− v2h

1− v2h

]
+

(1 + v)(1 + v + v2)

v

= (1 + v + v2)(1− v−2)
∑
h≥1

vh

1− vh
(−1)h−1 +

(1 + v)(1 + v + v2)

v
.

This needs to be expanded about v = 1:

(1 + v + v2)(1− v−2) ∼ −6(1− v)− 3(1− v)2 + · · · ;

(1 + v)(1 + v + v2)

v
∼ 6− 3(1− v) + · · · ;

for the remaining sum we need the Mellin transform [3]. Set v = e−t, and transform

M
∑
h≥1

vh

1− vh
(−1)h−1 = M

∑
h,k≥1

e−thk(−1)h−1 = Γ(s)ζ(s)2(1− 21−s).

By the Mellin inversion formula:

∑
h≥1

vh

1− vh
(−1)h−1 =

1

2πi

∫ 2+i∞

2−i∞
Γ(s)ζ(s)2(1− 21−s)t−sds.

The line of integration will be shifted to the left, and the collected residues constitute the
expansion about t = 0:∑

h≥1

vh

1− vh
(−1)h−1 ∼ log 2

t
− 1

4
+

t

48
∼ log 2

1− v
− log 2

2
− 1

4
+ · · · .

Combining, ∑
h≥0

No-Horizh(z) ∼ 6− 6 log 2− 3

2
(1− v) + · · · .

But
1− z −

√
1− 2z − 3z2

2z2
= 1 + v + v2 ∼ 3− 3(1− v) + · · · .

Comparing the coefficients of 1− v, we find that asymptotically about half of the Motzkin paths
belong to the ‘No-horizontal’ and about half of the Motzkin paths belong to the ‘horizontal’ class.
Again, this is intuitively clear, once one sees the generating functions of both families.
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