Karol Gryszka
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 122–128
DOI: 10.7546/nntdm.2021.27.4.122-128
Full paper (PDF, 193 Kb)
Details
Authors and affiliations
Karol Gryszka
Institute of Mathematics, Pedagogical University of Kraków
Podchorążych 2, 30-084 Kraków, Poland
Abstract
The purpose of this note is to prove several binomial-like formulas whose exponents are values of the function ω(n) counting distinct prime factors of n.
Keywords
- Divisor
- Multiplicative function
- Square-free number
- Multinomial formula
- Symmetric polynomial
2020 Mathematics Subject Classification
- 11A25
- 11C08
References
- Jakimczuk, R. (2018). On the function ω(n). International Mathematical Forum, 13(3), 107–116.
- Lang, S. (2002). Algebra, Graduate Texts in Mathematics, 211 (Revised third ed.), New York: Springer-Verlag.
- Vassilev-Missana, M. V. (2019). New form of the Newton’s binomial theorem. Notes on Number Theory and Discrete Mathematics, 25(1), 48–49.
Related papers
Cite this paper
Gryszka, K. (2021). Binomial formulas via divisors of numbers. Notes on Number Theory and Discrete Mathematics, 27(4), 122-128, DOI: 10.7546/nntdm.2021.27.4.122-128/.