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1 Introduction

Throughout the article, let n > 2 be an integer with canonical factorization

k
.
n=[1n
i=1

where p;’s are prime numbers and a;’s are positive integers. We define the function w(n)
(including n = 1 as an argument) counting the number of distinct prime factors [1], that is,

k
w(n) = o= igp?i’ ey
0, n=1.
In the recent paper of Vassilev-Missana [3] the following fact is provided.
Theorem 1.1. If n is a square-free number, then
(1+z)e =) g4, 2)
d|
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In particular, after substitution x — g the equation (2) leads to the binomial-like expansion
a + b Z aw(n d)bw(d)' (3)
din

In the paper we provide several generalizations of formulas (2) and (3). We prove some results
for the sum of more than two terms case and also some results for non-square-free numbers.

2 Multinomial theorem for square-free number

In this section, we generalize formula (3) to the power of more than two terms. First, for a given
integer n > 1 and any integer m > 1 we define the set

DiV(n,m) = {<d07d17 ] 7dm71>dm> S Nm+1 : dO =n, dl‘d07 veey dm71|dm727 dm == 1}

Theorem 2.1. Suppose n is a square-free number. Then

(@14 o)M= > Hx i) (4)

Div(n,m) =1
Note that (3) is a special case of (4) for m = 2.
Proof. The proof goes by induction on m. First, we recall the proof for the case m = 2 adapted to

our notation.
For arbitrary integer n > 1 and real =, set f(n) = 2. Then f is multiplicative and so
= /()
din
w(n)
is multiplicative. Now suppose n is a square-free number, thatis n = [] p;. Then
i=1

w(n) w(n) w(n)

Fn)= 1] F) = [TUO + fp) = [T +2) = (1 +2)*0. )

=1 =1 =1
On the other hand,

= fld)=> a*. (©)

din dln

Setting © = % yields
1

T2 w(d) fw(d
1 =
( +:c1> Zx

dln

Multiplying by xl ) we get the formula (4) with m = 2. Note that in this case
Div(n,2) = {(n,d,1) : d|n}

and the exponents of 21 and x5 are w(n) — w(d) and w(d), accordingly.
We now move to the induction step. Suppose (4) holds for m > 1. Then
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(x4 + Ierl)w(n) — Z(xl 4ot xm>w(d)xr;)n(z)l—w(d) A
dln

:Z Z ﬁx‘;’(dil)_w(di) x‘;;(z)lfw(d) 8)

din \Div(d,m) =1
— Z Z x:;(ﬁ)l—w(d) H x‘;’(difl)*w(di)’ (9)
dln Div(d,m) 1=1
where in (7) we apply (3) for a = z,,,4; and b = 21 + - - - + x,,,, and in (8) we apply induction
hypothesis. Notice that the set of indices of the double sum in (9) and the set Div(n,m + 1) are in
one-to-one correspondence, that is
{(n, (do,dy,...,dy)) : (do,...,dn) € Div(d,m), d|n}
and

Div(n,m+1) = {(dy,d},....d,, d\) €N™2 : d=n, d|d}, ..., d,|d\ 1, dpyy =1}

m—17 “'m

are bijective and the bijection is set by

(n, (do,dl, - 7dm)) — (dé),dll, o d d;n—l-l) = (TL, do,dl,. .. ,dm)

) m?

We use the above reasoning to (9), which leads to the following formula

m+1

w(n)—w(d) . w(di—1)—w(di) _ w(di—1)—w(d;)
Z Z xm—l—l gxz Z H Z;

dln Div(d,m) Div(n,m+1) =1

and completes the induction. ]
Example 2.2. Consider m = 4 and n = 2 - 3 (here w(n) = 2). Then
Div(6,4) ={(6,6,6,6,1), (6,6,6,3,1),(6,6,6,2,1),(6,6,6,1,1),
(6,6,3,3,1),(6,6,3,1,1),(6,6,2,2,1),(6,6,2,1,1),
(6,6,1,1,1),(6,3,3,3,1),(6,3,3,1,1),(6,3,1,1,1),
(6,2,2,2,1),(6,2,2,1,1),(6,2,1,1,1),(6,1,1,1,1)}
and the corresponding terms of (4) with (for clarity) a, b, c and d instead of x, x2, x3 and x, are:

d? cd cd A
bd bc bd be

b> ad ac ab

ad ac ab a?

It is clear that this corresponds to the multinomial expansion of (a + b + ¢ + d)*.
We note two immediate consequences of Theorem 2.1.

Corollary 2.3. If n is a square-free number, then

w(n)

card Div(n,m) = m

Proof. Apply Theorem 2.1 withzy =--- =z, = 1. [
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Corollary 2.4. The number of non-increasing sequences dy, . .., d,, of length m, provided the
numbers are from the set of factors of some square-free number n and d;. is a factor of d; for

w(n)

i=1,...,m—1, isequal to (m+ 1)

3 Results for numbers that are not square-free

In Theorem 1.1, we assume that n is a square-free number. It turns out that (2) and (3) are special
cases of the following formula (see also [3]).

Theorem 3.1. For arbitrary integer n > 0 and any x,y € R we have

w(n)
[[@+ay) => awm— (10)
=1

d|n
Proof. Notice that for prime p and a > 0 we have
Fp*)=f(1)+ flp)+---+ f") =1 +axz,

where /' and f are defined as in the proof of Theorem 2.1. Hence

w(n) w(n)
H Fp) =[] (1 + aw)
i=1

and equation (6) is valid for arbitrary n. Therefore,

w(n)
H + a;x) Z 2
i=1 dn
and substitution z — g leads to (10). [l

Example 3.2. Let n = 360 = 23 - 32 - 5. Then the left-hand-side becomes a formula for
(z + 3y)(x + 2y)(z + y) = 2° + 62y + 11zy® + 6y°

in terms of the numbers related to divisors of 360. The terms corresponding to given divisor d are
gathered in Table 1.

d 360 | 72 | 120 24 | 40 | 8 |180| 36 | 60 | 12 | 20 | 4
=@ B [ | o8 |2y |22 | 2% | o8 | 202 | o | 2 | 2y | 22y
d 90 |18 | 30| 6 | 10| 2 | 45| 9 | 15
xw(n)—w(d)yw(d) y3 Q?y2 y3 ny ny ny leyQ ny $y2 $2y ny 3

Table 1. Terms corresponding to all divisors d or 360, ordered in decreasing order
of the vector of powers of consecutive primes.

Note a trivial observation based on Theorem 3.1. If we substitute x = y = 1, then the
right-hand side of (10) counts divisors of n, while the left-hand side of that formula is the usual
formula for the number of divisors:
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k

[T +a).

i=1

The following results search for the expansion of (z + y)“(™ for n’s that are not square-free
numbers.

The next theorem is a binomial-like expansion for powers of square-free numbers. Here, to
compensate changes in the formula, we have to include additional factor to the right-hand side.

Theorem 3.3. Suppose m is a square-free number and n = m’ for some integer { > 1. Then

wo(m)—(d) ()
(g = —g— (11)

dln

Proof. We apply previous results to obtain the following equations:

w(n)
(x4 y)°™ = <x +7- Q)

l
w(n) y
- /. _)
H (x + /
w —w( w(d)
=yt OR (12)
din
where (12) follows from (10). O

Notice that equation (11) can also be written in one of the following fashion, resembling a
binomial-like expansion:

(l,_l_,yw(n_ wn)ngw(n —w( w()
dn

(b + by)*™) = Z(g L) wld)ywld)
dln

Example 3.4. Consider n = 36 = (2 - 3)? (here ¢ = 2). The terms corresponding to all divisors
of n are in Table 2.

d 3618121 9 | 6| 4| 3] 2
xw(n)—w(d)yw(d) y2 y2 yQ Ty y2 zy |2y | Ty 2
¢@(d) 41414214121 2]2]1

Table 2. Analysis of n = 36

Interpreting second and third row of Table 2 as fractions we see that they add up to 2 + 2zy + v2,
as expected.

We now present a result for arbitrary number n. Recall that if R[X7, ..., X}] is a ring of
polynomials in & variables over the field of real numbers, then elementary symmetric polynomials
Sm (X1, ..., X)) are defined as the sums of all distinct products of m variables, that is:
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S()(Xl,...,Xk) — 17
SI<X17"‘7X/€):X1+"'+XI€7

So(Xi, . Xi) = > XX

k—1
Sp1(X1, .., X)) = > 1%

1< <ig<-<ip_1<k j=1

Se(Xp, ., X)) = X1+ Xo

See [2] for further details concerning symmetric polynomials.
We now present the binomial-like expansion formula involving the function w(n) and
symmetric polynomials.

w(n)
Lemma 3.5. Suppose n = [] p}* is a canonical factorization of n and fix m > 0. Then
i=1

card{d € N : w(d) =m and dn} = Sp,(ay, ..., aum)).

Proof. Suppose w(d) = m. Then the number of divisors of n with that many distinct prime factors
is, using combinatorial argument, equal to

Z Haz] = al,...,aw(n)).

1<i1 <ia< - <im<w(n) J

For example, if m = 2, then we choose two prime factors p; and p; with ¢ # j and consider
numbers of the form pfipsj ,where b; € {1,...,a;} and b; € {1,...,a;}. There are exactly

Z aia; = Sa(aq, ..., aum))
1<i<j<w(n)
many divisors with two distinct prime factors. This generalizes to any number m. ]
w(n)

Theorem 3.6. Suppose n = [] pi* is a canonical factorization of n. Then
i=1

Z (“*”’)
w(n w(d) w(n)—w(d), w(d)
x+y S al,.. aw(n))z Y .

Proof. Let k = w(n). Using classic binomial expansion we have

£ Qer-E el o

=0 =0 djn
w(d)=1

Equation (13) includes an additional factor that is a sum over divisors multiplied by a constant C;,

() -2 a(5)

w(d)=1
127
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To find the constant, notice that for fixed ¢« and by Lemma 3.5 we have

k
C; = (Z) = 1 . = L ) (14)
S (%) card{deN : w(d) =i and dn}  Si(a,...,a)
din
w(d)=i

Since k = w(n) and ¢ = w(d), combining (14) with (13) we obtain

" (o) ),
et din Sw(d)(al,--)-,awm))x . .
Example 3.7. To illustrate Theorem 3.6, let n = 360 = 23 - 32 - 5'. Then
S0(3,2,1) =1,
$1(3,2,1) = 6,
$5(3,2,1) = 11,
S3(3,2,1) =6,

and using the values in Table 1 in Example 3.2 we see that respective values coincide with the
coefficients of the expansion of the polynomial. For example, there are 11 different divisors of n
(3)

52(3,2,1)

with w(d) = 2, each of them providing the same term zy? = Zay.
The above example inspires us to provide one more result. Using Theorem 3.1 and Lemma 3.5,
we can easily deduce the following formula.
w(n)

Corollary 3.8. Suppose n = [][ p}® is a canonical factorization of n. Then
i=1

w(n) w

[T +aw) = Siar....aup)a™ "y

=1 )

—~

n)

I
o

4 Conclusion

We have derived several binomial-like expansions related to the function w(n). Our results also
cover the cases where n need not be a square-free number. On the other hand, the formula provided
in Theorem 3.6 is far from a very elegant formula (11). It would be interesting to find a simplified
version of the former, perhaps without using binomial coefficients or symmetric polynomials.
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