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1 Introduction

Throughout the article, let n ≥ 2 be an integer with canonical factorization

n =
k∏

i=1

paii ,

where pi’s are prime numbers and ai’s are positive integers. We define the function ω(n)

(including n = 1 as an argument) counting the number of distinct prime factors [1], that is,

ω(n) :=

k, n =
k∏

i=1

paii ,

0, n = 1.

(1)

In the recent paper of Vassilev-Missana [3] the following fact is provided.

Theorem 1.1. If n is a square-free number, then

(1 + x)ω(n) =
∑
d|n

xω(d). (2)
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In particular, after substitution x→ b

a
the equation (2) leads to the binomial-like expansion

(a+ b)ω(n) =
∑
d|n

aω(n)−ω(d)bω(d). (3)

In the paper we provide several generalizations of formulas (2) and (3). We prove some results
for the sum of more than two terms case and also some results for non-square-free numbers.

2 Multinomial theorem for square-free number

In this section, we generalize formula (3) to the power of more than two terms. First, for a given
integer n ≥ 1 and any integer m ≥ 1 we define the set

Div(n,m) = {(d0, d1, . . . , dm−1, dm) ∈ Nm+1 : d0 = n, d1|d0, . . . , dm−1|dm−2, dm = 1}.

Theorem 2.1. Suppose n is a square-free number. Then

(x1 + · · ·+ xm)
ω(n) =

∑
Div(n,m)

m∏
i=1

x
ω(di−1)−ω(di)
i . (4)

Note that (3) is a special case of (4) for m = 2.

Proof. The proof goes by induction on m. First, we recall the proof for the case m = 2 adapted to
our notation.

For arbitrary integer n ≥ 1 and real x, set f(n) = xω(n). Then f is multiplicative and so

F (n) =
∑
d|n

f(d)

is multiplicative. Now suppose n is a square-free number, that is n =
ω(n)∏
i=1

pi. Then

F (n) =

ω(n)∏
i=1

F (pi) =

ω(n)∏
i=1

(f(1) + f(pi)) =

ω(n)∏
i=1

(1 + x) = (1 + x)ω(n). (5)

On the other hand,
F (n) =

∑
d|n

f(d) =
∑
d|n

xω(d). (6)

Setting x =
x2

x1
yields (

1 +
x2

x1

)ω(n)

=
∑
d|n

x
ω(d)
2 x

−ω(d)
1 .

Multiplying by x
ω(n)
1 we get the formula (4) with m = 2. Note that in this case

Div(n, 2) = {(n, d, 1) : d|n}

and the exponents of x1 and x2 are ω(n)− ω(d) and ω(d), accordingly.
We now move to the induction step. Suppose (4) holds for m > 1. Then
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(x1 + · · ·+ xm+1)
ω(n) =

∑
d|n

(x1 + · · ·+ xm)
ω(d)x

ω(n)−ω(d)
m+1 (7)

=
∑
d|n

 ∑
Div(d,m)

m∏
i=1

x
ω(di−1)−ω(di)
i

x
ω(n)−ω(d)
m+1 (8)

=
∑
d|n

∑
Div(d,m)

x
ω(n)−ω(d)
m+1

m∏
i=1

x
ω(di−1)−ω(di)
i , (9)

where in (7) we apply (3) for a = xm+1 and b = x1 + · · · + xm, and in (8) we apply induction
hypothesis. Notice that the set of indices of the double sum in (9) and the set Div(n,m+ 1) are in
one-to-one correspondence, that is

{(n, (d0, d1, . . . , dm)) : (d0, . . . , dm) ∈ Div(d,m), d|n}

and

Div(n,m+ 1) = {(d′0, d′1, . . . , d′m, d′m+1) ∈ Nm+2 : d′0 = n, d′1|d′0, . . . , d′m|d′m−1, d′m+1 = 1}

are bijective and the bijection is set by

(n, (d0, d1, . . . , dm)) 7→ (d′0, d
′
1, . . . , d

′
m, d

′
m+1) = (n, d0, d1, . . . , dm).

We use the above reasoning to (9), which leads to the following formula∑
d|n

∑
Div(d,m)

x
ω(n)−ω(d)
m+1

m∏
i=1

x
ω(di−1)−ω(di)
i =

∑
Div(n,m+1)

m+1∏
i=1

x
ω(di−1)−ω(di)
i

and completes the induction.

Example 2.2. Consider m = 4 and n = 2 · 3 (here ω(n) = 2). Then

Div(6, 4) ={(6, 6, 6, 6, 1), (6, 6, 6, 3, 1), (6, 6, 6, 2, 1), (6, 6, 6, 1, 1),
(6, 6, 3, 3, 1), (6, 6, 3, 1, 1), (6, 6, 2, 2, 1), (6, 6, 2, 1, 1),

(6, 6, 1, 1, 1), (6, 3, 3, 3, 1), (6, 3, 3, 1, 1), (6, 3, 1, 1, 1),

(6, 2, 2, 2, 1), (6, 2, 2, 1, 1), (6, 2, 1, 1, 1), (6, 1, 1, 1, 1)}

and the corresponding terms of (4) with (for clarity) a, b, c and d instead of x1, x2, x3 and x4 are:

d2 cd cd c2

bd bc bd bc

b2 ad ac ab

ad ac ab a2

It is clear that this corresponds to the multinomial expansion of (a+ b+ c+ d)2.

We note two immediate consequences of Theorem 2.1.

Corollary 2.3. If n is a square-free number, then

cardDiv(n,m) = mω(n).

Proof. Apply Theorem 2.1 with x1 = · · · = xm = 1.
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Corollary 2.4. The number of non-increasing sequences d1, . . . , dm of length m, provided the
numbers are from the set of factors of some square-free number n and di+1 is a factor of di for
i = 1, . . . ,m− 1, is equal to (m+ 1)ω(n).

3 Results for numbers that are not square-free

In Theorem 1.1, we assume that n is a square-free number. It turns out that (2) and (3) are special
cases of the following formula (see also [3]).

Theorem 3.1. For arbitrary integer n > 0 and any x, y ∈ R we have

ω(n)∏
i=1

(x+ aiy) =
∑
d|n

xω(n)−ω(d)yω(d). (10)

Proof. Notice that for prime p and a ≥ 0 we have

F (pa) = f(1) + f(p) + · · ·+ f(pa) = 1 + ax,

where F and f are defined as in the proof of Theorem 2.1. Hence

F (n) =

ω(n)∏
i=1

F (paii ) =

ω(n)∏
i=1

(1 + aix)

and equation (6) is valid for arbitrary n. Therefore,

ω(n)∏
i=1

(1 + aix) =
∑
d|n

xω(d)

and substitution x→ y

x
leads to (10).

Example 3.2. Let n = 360 = 23 · 32 · 5. Then the left-hand-side becomes a formula for

(x+ 3y)(x+ 2y)(x+ y) = x3 + 6x2y + 11xy2 + 6y3

in terms of the numbers related to divisors of 360. The terms corresponding to given divisor d are
gathered in Table 1.

d 360 72 120 24 40 8 180 36 60 12 20 4

xω(n)−ω(d)yω(d) y3 xy2 y3 xy2 xy2 x2y y3 xy2 y3 xy2 xy2 x2y

d 90 18 30 6 10 2 45 9 15 3 5 1

xω(n)−ω(d)yω(d) y3 xy2 y3 xy2 xy2 x2y xy2 x2y xy2 x2y x2y x3

Table 1. Terms corresponding to all divisors d or 360, ordered in decreasing order
of the vector of powers of consecutive primes.

Note a trivial observation based on Theorem 3.1. If we substitute x = y = 1, then the
right-hand side of (10) counts divisors of n, while the left-hand side of that formula is the usual
formula for the number of divisors:
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k∏
i=1

(1 + ai).

The following results search for the expansion of (x+ y)ω(n) for n’s that are not square-free
numbers.

The next theorem is a binomial-like expansion for powers of square-free numbers. Here, to
compensate changes in the formula, we have to include additional factor to the right-hand side.

Theorem 3.3. Suppose m is a square-free number and n = m` for some integer ` > 1. Then

(x+ y)ω(n) =
∑
d|n

xω(n)−ω(d)yω(d)

`ω(d)
. (11)

Proof. We apply previous results to obtain the following equations:

(x+ y)ω(n) =
(
x+ ` · y

`

)ω(n)
=

ω(n)∏
i=1

(
x+ ` · y

`

)
=
∑
d|n

xω(n)−ω(d)yω(d)

`ω(d)
, (12)

where (12) follows from (10).

Notice that equation (11) can also be written in one of the following fashion, resembling a
binomial-like expansion:

(x+ y)ω(n) = `−ω(n)
∑
d|n

(` · x)ω(n)−ω(d)yω(d),

(`x+ `y)ω(n) =
∑
d|n

(` · x)ω(n)−ω(d)yω(d).

Example 3.4. Consider n = 36 = (2 · 3)2 (here ` = 2). The terms corresponding to all divisors
of n are in Table 2.

d 36 18 12 9 6 4 3 2 1

xω(n)−ω(d)yω(d) y2 y2 y2 xy y2 xy xy xy x2

`ω(d) 4 4 4 2 4 2 2 2 1

Table 2. Analysis of n = 36

Interpreting second and third row of Table 2 as fractions we see that they add up to x2 + 2xy + y2,
as expected.

We now present a result for arbitrary number n. Recall that if R[X1, . . . , Xk] is a ring of
polynomials in k variables over the field of real numbers, then elementary symmetric polynomials
Sm(X1, . . . , Xk) are defined as the sums of all distinct products of m variables, that is:
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S0(X1, . . . , Xk) = 1,

S1(X1, . . . , Xk) = X1 + · · ·+Xk,

S2(X1, . . . , Xk) =
∑

1≤i<j≤k

XiXj,

...

Sk−1(X1, . . . , Xk) =
∑

1≤i1<i2<···<ik−1≤k

k−1∏
j=1

Xij ,

Sk(X1, . . . , Xk) = X1 · · ·Xk.

See [2] for further details concerning symmetric polynomials.
We now present the binomial-like expansion formula involving the function ω(n) and

symmetric polynomials.

Lemma 3.5. Suppose n =
ω(n)∏
i=1

paii is a canonical factorization of n and fix m ≥ 0. Then

card{d ∈ N : ω(d) = m and d|n} = Sm(a1, . . . , aω(n)).

Proof. Suppose ω(d) = m. Then the number of divisors of n with that many distinct prime factors
is, using combinatorial argument, equal to∑

1≤i1<i2<···<im≤ω(n)

m∏
j=1

aij = Sm(a1, . . . , aω(n)).

For example, if m = 2, then we choose two prime factors pi and pj with i 6= j and consider
numbers of the form pbii p

bj
j , where bi ∈ {1, . . . , ai} and bj ∈ {1, . . . , aj}. There are exactly∑

1≤i<j≤ω(n)

aiaj = S2(a1, . . . , aω(n))

many divisors with two distinct prime factors. This generalizes to any number m.

Theorem 3.6. Suppose n =
ω(n)∏
i=1

paii is a canonical factorization of n. Then

(x+ y)ω(n) =
∑
d|n

(
ω(n)
ω(d)

)
Sω(d)(a1, . . . , aω(n))

xω(n)−ω(d)yω(d).

Proof. Let k = ω(n). Using classic binomial expansion we have

(x+ y)k =
k∑

i=0

(
k

i

)
xk−iyi =

k∑
i=0

∑
d|n

ω(d)=i

Ci

(
k

i

)
xk−iyi. (13)

Equation (13) includes an additional factor that is a sum over divisors multiplied by a constant Ci,
fixed for given i. In particular, (

k

i

)
=
∑
d|n

ω(d)=i

Ci

(
k

i

)
.
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To find the constant, notice that for fixed i and by Lemma 3.5 we have

Ci =

(
k
i

)∑
d|n

ω(d)=i

(
k
i

) =
1

card{d ∈ N : ω(d) = i and d|n}
=

1

Si(a1, . . . , ak)
. (14)

Since k = ω(n) and i = ω(d), combining (14) with (13) we obtain

(x+ y)ω(n) =
∑
d|n

(
ω(n)
ω(d)

)
Sω(d)(a1, . . . , aω(n))

xω(n)−ω(d)yω(d).

Example 3.7. To illustrate Theorem 3.6, let n = 360 = 23 · 32 · 51. Then

S0(3, 2, 1) = 1,

S1(3, 2, 1) = 6,

S2(3, 2, 1) = 11,

S3(3, 2, 1) = 6,

and using the values in Table 1 in Example 3.2 we see that respective values coincide with the
coefficients of the expansion of the polynomial. For example, there are 11 different divisors of n

with ω(d) = 2, each of them providing the same term (32)
S2(3,2,1)

xy2 = 3
11
xy2.

The above example inspires us to provide one more result. Using Theorem 3.1 and Lemma 3.5,
we can easily deduce the following formula.

Corollary 3.8. Suppose n =
ω(n)∏
i=1

paii is a canonical factorization of n. Then

ω(n)∏
i=1

(x+ aiy) =

ω(n)∑
i=0

Si(a1, . . . , aω(n))x
ω(n)−iyi.

4 Conclusion

We have derived several binomial-like expansions related to the function ω(n). Our results also
cover the cases where n need not be a square-free number. On the other hand, the formula provided
in Theorem 3.6 is far from a very elegant formula (11). It would be interesting to find a simplified
version of the former, perhaps without using binomial coefficients or symmetric polynomials.
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