Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 27, 2021, No. 4, 122–128 DOI: 10.7546/nntdm.2021.27.4.122-128

Binomial formulas via divisors of numbers

Karol Gryszka

Institute of Mathematics, Pedagogical University of Kraków Podchorążych 2, 30-084 Kraków, Poland e-mail: karol.gryszka@up.krakow.pl

Received: 9 March 2021

Accepted: 21 September 2021

Abstract: The purpose of this note is to prove several binomial-like formulas whose exponents are values of the function $\omega(n)$ counting distinct prime factors of n.

Keywords: Divisor, Multiplicative function, Square-free number, Multinomial formula, Symmetric polynomial.

2020 Mathematics Subject Classification: 11A25, 11C08.

1 Introduction

Throughout the article, let $n \ge 2$ be an integer with canonical factorization

$$n = \prod_{i=1}^{k} p_i^{a_i},$$

where p_i 's are prime numbers and a_i 's are positive integers. We define the function $\omega(n)$ (including n = 1 as an argument) counting the number of distinct prime factors [1], that is,

$$\omega(n) := \begin{cases} k, & n = \prod_{i=1}^{k} p_i^{a_i}, \\ 0, & n = 1. \end{cases}$$
(1)

In the recent paper of Vassilev-Missana [3] the following fact is provided.

Theorem 1.1. If n is a square-free number, then

$$(1+x)^{\omega(n)} = \sum_{d|n} x^{\omega(d)}.$$
 (2)

In particular, after substitution $x \to \frac{b}{a}$ the equation (2) leads to the binomial-like expansion

$$(a+b)^{\omega(n)} = \sum_{d|n} a^{\omega(n)-\omega(d)} b^{\omega(d)}.$$
 (3)

In the paper we provide several generalizations of formulas (2) and (3). We prove some results for the sum of more than two terms case and also some results for non-square-free numbers.

2 Multinomial theorem for square-free number

In this section, we generalize formula (3) to the power of more than two terms. First, for a given integer $n \ge 1$ and any integer $m \ge 1$ we define the set

$$Div(n,m) = \{ (d_0, d_1, \dots, d_{m-1}, d_m) \in \mathbb{N}^{m+1} : d_0 = n, d_1 | d_0, \dots, d_{m-1} | d_{m-2}, d_m = 1 \}.$$

Theorem 2.1. Suppose n is a square-free number. Then

$$(x_1 + \dots + x_m)^{\omega(n)} = \sum_{\text{Div}(n,m)} \prod_{i=1}^m x_i^{\omega(d_{i-1}) - \omega(d_i)}.$$
 (4)

Note that (3) is a special case of (4) for m = 2.

Proof. The proof goes by induction on m. First, we recall the proof for the case m = 2 adapted to our notation.

For arbitrary integer $n \ge 1$ and real x, set $f(n) = x^{\omega(n)}$. Then f is multiplicative and so

$$F(n) = \sum_{d|n} f(d)$$

is multiplicative. Now suppose n is a square-free number, that is $n = \prod_{i=1}^{\omega(n)} p_i$. Then

$$F(n) = \prod_{i=1}^{\omega(n)} F(p_i) = \prod_{i=1}^{\omega(n)} (f(1) + f(p_i)) = \prod_{i=1}^{\omega(n)} (1+x) = (1+x)^{\omega(n)}.$$
 (5)

On the other hand,

$$F(n) = \sum_{d|n} f(d) = \sum_{d|n} x^{\omega(d)}.$$
 (6)

Setting $x = \frac{x_2}{x_1}$ yields

$$\left(1 + \frac{x_2}{x_1}\right)^{\omega(n)} = \sum_{d|n} x_2^{\omega(d)} x_1^{-\omega(d)}$$

Multiplying by $x_1^{\omega(n)}$ we get the formula (4) with m = 2. Note that in this case

$$Div(n,2) = \{(n,d,1) : d|n\}$$

and the exponents of x_1 and x_2 are $\omega(n) - \omega(d)$ and $\omega(d)$, accordingly.

We now move to the induction step. Suppose (4) holds for m > 1. Then

$$(x_1 + \dots + x_{m+1})^{\omega(n)} = \sum_{d|n} (x_1 + \dots + x_m)^{\omega(d)} x_{m+1}^{\omega(n) - \omega(d)}$$
(7)

$$=\sum_{d|n} \left(\sum_{\text{Div}(d,m)} \prod_{i=1}^{m} x_i^{\omega(d_{i-1})-\omega(d_i)}\right) x_{m+1}^{\omega(n)-\omega(d)}$$
(8)

$$= \sum_{d|n} \sum_{\text{Div}(d,m)} x_{m+1}^{\omega(n)-\omega(d)} \prod_{i=1}^{m} x_i^{\omega(d_{i-1})-\omega(d_i)},$$
(9)

where in (7) we apply (3) for $a = x_{m+1}$ and $b = x_1 + \cdots + x_m$, and in (8) we apply induction hypothesis. Notice that the set of indices of the double sum in (9) and the set Div(n, m+1) are in one-to-one correspondence, that is

$$\{(n, (d_0, d_1, \dots, d_m)) : (d_0, \dots, d_m) \in \text{Div}(d, m), d|n\}$$

and

$$\operatorname{Div}(n, m+1) = \{ (d'_0, d'_1, \dots, d'_m, d'_{m+1}) \in \mathbb{N}^{m+2} : d'_0 = n, d'_1 | d'_0, \dots, d'_m | d'_{m-1}, d'_{m+1} = 1 \}$$

are bijective and the bijection is set by

$$(n, (d_0, d_1, \dots, d_m)) \mapsto (d'_0, d'_1, \dots, d'_m, d'_{m+1}) = (n, d_0, d_1, \dots, d_m).$$

We use the above reasoning to (9), which leads to the following formula

$$\sum_{d|n} \sum_{\text{Div}(d,m)} x_{m+1}^{\omega(n)-\omega(d)} \prod_{i=1}^m x_i^{\omega(d_{i-1})-\omega(d_i)} = \sum_{\text{Div}(n,m+1)} \prod_{i=1}^{m+1} x_i^{\omega(d_{i-1})-\omega(d_i)}$$

and completes the induction.

Example 2.2. Consider m = 4 and $n = 2 \cdot 3$ (here $\omega(n) = 2$). Then

$$\begin{aligned} \text{Div}(6,4) = & \{(6,6,6,6,1), (6,6,6,3,1), (6,6,6,2,1), (6,6,6,1,1), \\ & (6,6,3,3,1), (6,6,3,1,1), (6,6,2,2,1), (6,6,2,1,1), \\ & (6,6,1,1,1), (6,3,3,3,1), (6,3,3,1,1), (6,3,1,1,1), \\ & (6,2,2,2,1), (6,2,2,1,1), (6,2,1,1,1), (6,1,1,1,1)\} \end{aligned}$$

and the corresponding terms of (4) with (for clarity) a, b, c and d instead of x_1, x_2, x_3 and x_4 are:

$$\begin{array}{cccccc} d^2 & cd & cd & c^2 \\ bd & bc & bd & bc \\ b^2 & ad & ac & ab \\ ad & ac & ab & a^2 \end{array}$$

It is clear that this corresponds to the multinomial expansion of $(a + b + c + d)^2$.

We note two immediate consequences of Theorem 2.1.

Corollary 2.3. If n is a square-free number, then

card
$$\operatorname{Div}(n,m) = m^{\omega(n)}$$
.

Proof. Apply Theorem 2.1 with $x_1 = \cdots = x_m = 1$.

124

Corollary 2.4. The number of non-increasing sequences d_1, \ldots, d_m of length m, provided the numbers are from the set of factors of some square-free number n and d_{i+1} is a factor of d_i for $i = 1, \ldots, m-1$, is equal to $(m+1)^{\omega(n)}$.

3 Results for numbers that are not square-free

In Theorem 1.1, we assume that n is a square-free number. It turns out that (2) and (3) are special cases of the following formula (see also [3]).

Theorem 3.1. For arbitrary integer n > 0 and any $x, y \in \mathbb{R}$ we have

 $\langle \rangle$

$$\prod_{i=1}^{\omega(n)} (x + a_i y) = \sum_{d|n} x^{\omega(n) - \omega(d)} y^{\omega(d)}.$$
(10)

Proof. Notice that for prime p and $a \ge 0$ we have

$$F(p^a) = f(1) + f(p) + \dots + f(p^a) = 1 + ax,$$

where F and f are defined as in the proof of Theorem 2.1. Hence

$$F(n) = \prod_{i=1}^{\omega(n)} F(p_i^{a_i}) = \prod_{i=1}^{\omega(n)} (1 + a_i x)$$

and equation (6) is valid for arbitrary n. Therefore,

$$\prod_{i=1}^{\omega(n)} (1+a_i x) = \sum_{d|n} x^{\omega(d)}$$

and substitution $x \to \frac{y}{x}$ leads to (10).

Example 3.2. Let $n = 360 = 2^3 \cdot 3^2 \cdot 5$. Then the left-hand-side becomes a formula for

$$(x+3y)(x+2y)(x+y) = x^3 + 6x^2y + 11xy^2 + 6y^3$$

in terms of the numbers related to divisors of 360. The terms corresponding to given divisor d are gathered in Table 1.

d	360	72	120	24	40	8	180	36	60	12	20	4
$x^{\omega(n)-\omega(d)}y^{\omega(d)}$	y^3	xy^2	y^3	xy^2	xy^2	x^2y	y^3	xy^2	y^3	xy^2	xy^2	x^2y
d	90	18	30	6	10	2	45	9	15	3	5	1
$x^{\omega(n)-\omega(d)}y^{\omega(d)}$	y^3	xy^2	y^3	xy^2	xy^2	x^2y	xy^2	x^2y	xy^2	x^2y	x^2y	x^3

Table 1. Terms corresponding to all divisors d or 360, ordered in decreasing order of the vector of powers of consecutive primes.

Note a trivial observation based on Theorem 3.1. If we substitute x = y = 1, then the right-hand side of (10) counts divisors of n, while the left-hand side of that formula is the usual formula for the number of divisors:

$$\prod_{i=1}^k (1+a_i).$$

The following results search for the expansion of $(x + y)^{\omega(n)}$ for n's that are not square-free numbers.

The next theorem is a binomial-like expansion for powers of square-free numbers. Here, to compensate changes in the formula, we have to include additional factor to the right-hand side.

Theorem 3.3. Suppose m is a square-free number and $n = m^{\ell}$ for some integer $\ell > 1$. Then

$$(x+y)^{\omega(n)} = \sum_{d|n} \frac{x^{\omega(n)-\omega(d)}y^{\omega(d)}}{\ell^{\omega(d)}}.$$
(11)

Proof. We apply previous results to obtain the following equations:

$$(x+y)^{\omega(n)} = \left(x+\ell \cdot \frac{y}{\ell}\right)^{\omega(n)}$$
$$= \prod_{i=1}^{\omega(n)} \left(x+\ell \cdot \frac{y}{\ell}\right)$$
$$= \sum_{d|n} \frac{x^{\omega(n)-\omega(d)}y^{\omega(d)}}{\ell^{\omega(d)}},$$
(12)

where (12) follows from (10).

Notice that equation (11) can also be written in one of the following fashion, resembling a binomial-like expansion:

$$(x+y)^{\omega(n)} = \ell^{-\omega(n)} \sum_{d|n} (\ell \cdot x)^{\omega(n)-\omega(d)} y^{\omega(d)},$$
$$(\ell x + \ell y)^{\omega(n)} = \sum_{d|n} (\ell \cdot x)^{\omega(n)-\omega(d)} y^{\omega(d)}.$$

Example 3.4. Consider $n = 36 = (2 \cdot 3)^2$ (here $\ell = 2$). The terms corresponding to all divisors of n are in Table 2.

d	36	18	12	9	6	4	3	2	1
$x^{\omega(n)-\omega(d)}y^{\omega(d)}$	y^2	y^2	y^2	xy	y^2	xy	xy	xy	x^2
$\ell^{\omega(d)}$	4	4	4	2	4	2	2	2	1

Table 2. Analysis of n = 36

Interpreting second and third row of Table 2 as fractions we see that they add up to $x^2 + 2xy + y^2$, as expected.

We now present a result for arbitrary number n. Recall that if $\mathbb{R}[X_1, \ldots, X_k]$ is a ring of polynomials in k variables over the field of real numbers, then elementary symmetric polynomials $S_m(X_1, \ldots, X_k)$ are defined as the sums of all distinct products of m variables, that is:

$$S_{0}(X_{1},...,X_{k}) = 1,$$

$$S_{1}(X_{1},...,X_{k}) = X_{1} + \dots + X_{k},$$

$$S_{2}(X_{1},...,X_{k}) = \sum_{1 \le i < j \le k} X_{i}X_{j},$$

$$\vdots$$

$$S_{k-1}(X_{1},...,X_{k}) = \sum_{1 \le i_{1} < i_{2} < \dots < i_{k-1} \le k} \prod_{j=1}^{k-1} X_{i_{j}}$$

$$S_{k}(X_{1},...,X_{k}) = X_{1} \cdots X_{k}.$$

,

See [2] for further details concerning symmetric polynomials.

We now present the binomial-like expansion formula involving the function $\omega(n)$ and symmetric polynomials.

Lemma 3.5. Suppose
$$n = \prod_{i=1}^{\omega(n)} p_i^{a_i}$$
 is a canonical factorization of n and fix $m \ge 0$. Then
 $\operatorname{card} \{ d \in \mathbb{N} : \omega(d) = m \text{ and } d | n \} = S_m(a_1, \dots, a_{\omega(n)}).$

Proof. Suppose $\omega(d) = m$. Then the number of divisors of n with that many distinct prime factors is, using combinatorial argument, equal to

$$\sum_{1 \le i_1 < i_2 < \cdots < i_m \le \omega(n)} \prod_{j=1}^m a_{i_j} = S_m(a_1, \dots, a_{\omega(n)}).$$

For example, if m = 2, then we choose two prime factors p_i and p_j with $i \neq j$ and consider numbers of the form $p_i^{b_i} p_j^{b_j}$, where $b_i \in \{1, \ldots, a_i\}$ and $b_j \in \{1, \ldots, a_j\}$. There are exactly

$$\sum_{\leq i < j \le \omega(n)} a_i a_j = S_2(a_1, \dots, a_{\omega(n)})$$

many divisors with two distinct prime factors. This generalizes to any number m.

Theorem 3.6. Suppose $n = \prod_{i=1}^{\omega(n)} p_i^{a_i}$ is a canonical factorization of n. Then

$$(x+y)^{\omega(n)} = \sum_{d|n} \frac{\binom{\omega(n)}{\omega(d)}}{S_{\omega(d)}(a_1,\ldots,a_{\omega(n)})} x^{\omega(n)-\omega(d)} y^{\omega(d)}$$

Proof. Let $k = \omega(n)$. Using classic binomial expansion we have

1

$$(x+y)^{k} = \sum_{i=0}^{k} \binom{k}{i} x^{k-i} y^{i} = \sum_{i=0}^{k} \sum_{\substack{d|n\\\omega(d)=i}} C_{i} \binom{k}{i} x^{k-i} y^{i}.$$
 (13)

Equation (13) includes an additional factor that is a sum over divisors multiplied by a constant C_i , fixed for given *i*. In particular,

$$\binom{k}{i} = \sum_{\substack{d|n\\\omega(d)=i\\127}} C_i \binom{k}{i}.$$

To find the constant, notice that for fixed i and by Lemma 3.5 we have

$$C_{i} = \frac{\binom{k}{i}}{\sum_{\substack{d|n\\\omega(d)=i}} \binom{k}{i}} = \frac{1}{\operatorname{card}\{d \in \mathbb{N} : \omega(d) = i \text{ and } d|n\}} = \frac{1}{S_{i}(a_{1}, \dots, a_{k})}.$$
 (14)

Since $k = \omega(n)$ and $i = \omega(d)$, combining (14) with (13) we obtain

$$(x+y)^{\omega(n)} = \sum_{d|n} \frac{\binom{\omega(n)}{\omega(d)}}{S_{\omega(d)}(a_1,\dots,a_{\omega(n)})} x^{\omega(n)-\omega(d)} y^{\omega(d)}.$$

Example 3.7. To illustrate Theorem 3.6, let $n = 360 = 2^3 \cdot 3^2 \cdot 5^1$. Then

$$S_0(3, 2, 1) = 1,$$

 $S_1(3, 2, 1) = 6,$
 $S_2(3, 2, 1) = 11$
 $S_3(3, 2, 1) = 6,$

and using the values in Table 1 in Example 3.2 we see that respective values coincide with the coefficients of the expansion of the polynomial. For example, there are 11 different divisors of n with $\omega(d) = 2$, each of them providing the same term $\frac{\binom{3}{2}}{S_2(3,2,1)}xy^2 = \frac{3}{11}xy^2$.

The above example inspires us to provide one more result. Using Theorem 3.1 and Lemma 3.5, we can easily deduce the following formula.

Corollary 3.8. Suppose
$$n = \prod_{i=1}^{\omega(n)} p_i^{a_i}$$
 is a canonical factorization of n . Then
$$\prod_{i=1}^{\omega(n)} (x + a_i y) = \sum_{i=0}^{\omega(n)} S_i(a_1, \dots, a_{\omega(n)}) x^{\omega(n) - i} y^i.$$

4 Conclusion

We have derived several binomial-like expansions related to the function $\omega(n)$. Our results also cover the cases where *n* need not be a square-free number. On the other hand, the formula provided in Theorem 3.6 is far from a very elegant formula (11). It would be interesting to find a simplified version of the former, perhaps without using binomial coefficients or symmetric polynomials.

References

- [1] Jakimczuk, R. (2018). On the function $\omega(n)$. International Mathematical Forum, 13(3), 107–116.
- [2] Lang, S. (2002). *Algebra, Graduate Texts in Mathematics*, 211 (Revised third ed.), New York: Springer-Verlag.
- [3] Vassilev-Missana, M. V. (2019). New form of the Newton's binomial theorem. *Notes on Number Theory and Discrete Mathematics*, 25(1), 48–49.