Nadir Rezzoug, Ilias Laib and Guenda Kenza
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367-8275
Volume 26, 2020, Number 4, Pages 68–73
DOI: 10.7546/nntdm.2020.26.4.68-73
Full paper (PDF, 156 Kb)
Details
Authors and affiliations
Nadir Rezzoug ![]()
Laboratory of Analysis and Control of Partial Differential Equations
Faculty of Exact Sciences, Djillali Liabes University
Sidi Bel Abbes, Algeria
Ilias Laib ![]()
ENSTP, Garidi Kouba, 16051, Algiers, Algeria
and Laboratory of Equations with Partial Non-Linear Derivatives
ENS Vieux Kouba, Algiers, Algeria
Guenda Kenza ![]()
Faculty of Mathematics, University of Sciences and Technology Houari Boumédiène,
Algiers, Algeria
Abstract
For
large enough, there exists a primitive sequence
, such that
![]()
where
denotes the set of prime numbers.
Keywords
- Primitive sequences
- Erdős conjecture
- Prime numbers
2010 Mathematics Subject Classification
- 11Bxx
References
- Dusart., P. (1998). Autour de la fonction qui compte le nombre de nombres premiers, thèse de doctorat, université de Limoges, 17-1998.
- Erdős, P. (1935). Note on sequences of integers no one of which is divisible by any other, J.Lond. Math. Soc, 10, 126–128.
- Erdős, P., & Zhang, Z. (1993). Upper bound of
for primitive sequences, Math. Soc, 117, 891–895. - Farhi, B. (2017). Results and conjectures related to a conjecture of Erdős concerning primitive sequences, arXiv: 1709.08708v2 [math.NT] 25 Sep 2017.
- Laib, I., Derbal, A. & Mechik, R. (2019). Somme translatée sur des suites primitives et la conjecture d’Erdős. C. R. Acad. Sci. Paris, Ser. I, 357, 413–417.
- Massias, J.-P., & Robin, G. (1996). Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Theori. Nombres Bordeaux, 8, 215–242.
- Robbins, H. (1955). A remark on Stirling’s formula, Amer. Math. Monthly, 62, 26–29.
- Rosser, J. B., & Schoenfeld, L. (1962). Approximates formulas for some functions of prime numbers, Illinois Journal Math, 6, 64–94.
Related papers
- Laib, I. (2021). Note on translated sum on primitive sequences. Notes on Number Theory and Discrete Mathematics, 27(3), 39-43.
Cite this paper
Rezzoug, N., Laib, I. & Kenza, G. (2020). On a translated sum over primitive sequences related to a conjecture of Erdős. Notes on Number Theory and Discrete Mathematics, 26 (4), 68-73, DOI: 10.7546/nntdm.2020.26.4.68-73.
