Gustaf Söderlund
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 4, Pages 103–105
DOI: 10.7546/nntdm.2020.26.4.103-105
Full paper (PDF, 156 Kb)
Details
Authors and affiliations
Gustaf Söderlund
Kettilsgatan 4A 58221 Linköping, Sweden
Abstract
We show that the only primitive non-zero integer solutions to the Fermat quartic 34x4+y4=z4 are (x,y,z) = (± 2, ± 3, ± 5). The proofs are based on a previously given complete solution to another Fermat quartic namely x4+y4=17z4.
Keywords
- Fermat quartics
- Diophantine equations
- Primitive non-zero solutions
2010 Mathematics Subject Classification
- 11D41
References
- Cohen, H. (2007). Number Theory Volume I: Tools and Diophantine Equations, Springer, New York, pp. 397–410 and pp. 462–463.
- Darmon, H., & Granville, A. (1995). On the equation zm = F(x, y) and Axp + Byq = Czr , Bull. London Math. Soc., 27(6), 513–543.
- Flynn, E. V., & Wetherell, J. L. (2001). Covering collections and a challenge of Serre, Acta Arithmetica, 98, 197–205.
- Sally J. D., & Sally, P. J. (2007). Roots to Research: A Vertical Development of Mathematical Problems, American Mathematical Society.
Related papers
Cite this paper
Söderlund, G. (2020). A note on the Fermat quartic 34x4+y4=z4. Notes on Number Theory and Discrete Mathematics, 26 (4), 103-105, DOI: 10.7546/nntdm.2020.26.4.103-105.