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Abstract: We show that the only primitive non-zero integer solutions to the Fermat quartic
34z + y* = 2zt are (v,y,2) = (£2,4£3,45). The proofs are based on a previously given
complete solution to another Fermat quartic namely z* + y* = 172%.
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1 Introduction

A Fermat quartic can be regarded as a Diophantine equation of the form az* 4 by* = cz* where
a, b and c are fixed, non-zero and fourth power free integers [1,3]. We define a primitive non-zero
solution to this equation as a solution (g, yo, 20) Where axg, byy and cz, are pairwise relatively
prime and g - Yo - 2o # 0. From a well-known theorem of Darmon and Granville we conclude
that a Fermat quartic has only a finite number of primitive non-zero solutions [2].

Hence under these conditions there are a finite number of solutions or no solution at all. When
a = b = c = 1 we recognize Fermat’s last theorem for n = 4.

2 Main results

Theorem 1. The only primitive non-zero integer solutions to the Fermat quartic 34z + y* = 2*
are (z,y, z) = (£2,£3, £5).

Proof. We have 34z = 2* — y* = 342% = (2 + y?) - (z + y) - (¢ — y) and after congruence
considerations we realize that z and y are both odd and x is even.
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Furthermore, according to prerequisites 34z, y and z are pairwise relatively prime. Let
z=p+qandy = p— g where p Z ¢ mod 2 and (p, q) = 1 since (y, z) = 1. Hence we get

34z" =2 (p* +¢°) - 2p - 2q,
172 = 2> (P +¢%) - p-q.

Case I: p is even and ¢ is odd.
Hence p = 22 - ¢ since z is even and we get,

172t =2 (p* +¢*) - t - q. (1)
Since p? + ¢?, t and ¢ are pairwise relatively prime, we can distinguish three different cases.
Subcase 1. 17 | ¢ = q = 17A and from (1) we have,

=21 (pP+¢%) -t A

Hence,
p? +q¢* = B (2)

Since p and ¢ are squared in equation (2) we may assume that p and ¢ are positive. Hence, we
have p = 4t and t = D* = p = 4D*.
Thus, from (2) we have,

(4DY)? + ¢? = B* = ¢ = B* — (2D?)*,
which has no non-zero solutions according to [4].
Subcase 2. 17 | t = t = 17FE and if this ¢ value is inserted in equation (1), we have,
et =2 (p"+¢%)-E-q
We have,
p*+¢ =G 3)

As in Subcase 1, we may assume that g is positive. Hence, ¢ = F* and from (3) we get, p* =
G* — (F?)*, which has no non-zero solutions according to [4].

Subcase 3. 17 | (p* + ¢*). Thus we have,
p?+q* = 17TH*. (4)

From (1) we get z* = 2* . H* - ¢ - ¢ and since the left-hand side is positive, we must have
t=K*andq = J*ort = —K*and ¢ = —J*. If these substitutions are inserted in (4), we get
since p = 4t,

(FAK4? 4 (£J42 = 17TH*.

(2K2)* + (J2)* = 17TH™. (5)
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However, the equation a* + b* = 17¢* has according to [3] the only primitive non-zero solu-
tions (a, b, c) = (£1,+2,+1) and (a, b, c) = (£2,41,41). Hence, (2K?, J?, H) = (1,42, +1)
and (2K?%, J?, H) = (+2,+1,+1). Since 2K? # +1 and J* # +2 only the second alternative
must be applicable on (5). Hence, 2K? = 2 = K = 4+l and J?> = 1 = J = £1. Thus,
according to previous expressions of ¢,p and ¢ we have t = (+1)* = 1 and ¢ = (£1)* = 1 or
t=—(£1)*= —-land g = —(£1)* = —1. Since p = 4t, we getp = dand ¢ = L orp = —4
and ¢ = —1. Hence, since z =p+qgandy =p—qwegetz=44+1=5andy=4—-—1=3
orz = -4+ (-1) = =5andy = —4 — (—1) = —3. Thus, we have, (z,y) = (5,3) and
(2,y) = (=5,-3).

Case II. p is odd and ¢ is even.
According to Case [ we musthave p =1andg=4orp = —1and ¢ = —4. Since z = p+ g and
y=p—aq weget(z,y) = (5,—3) and (z,y) = (=5,3).

Finally, we see that 34z? = (£5)! — (£3)! = = = 42 and this completes the proof of
Theorem 1. U
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