Pentti Haukkanen and R. Sivaramakrishnan
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 4, 1998, Number 3, Pages 93–100
Full paper (PDF, 320 Kb)
Details
Authors and affiliations
Pentti Haukkanen
Department of Mathematical Sciences, University of Tampere,
P.O.Box 607, FIN-33101 Tampere, Finland
R. Sivaramakrishnan
Department of Studies in Mathematics, Mangalore University,
Dk 574199, India
Abstract
Nagell’s totient θ(n, r) counts the number of solutions of the congruence (*) n = x + y (mod r ) under the restriction (x, r) = (y, r) = 1. In this paper we evaluate the number θ(n, r, q) of solutions of the congruence (*) under the restriction (x,r) = (y,r) = q, where q|r, via Ramanathan’s approach to class-division of integers (mod r).
References
- Tom M. Apostol: Introduction to Analytic Number Theory, Springer-Verlag UTM (1976).
- Umberto Cerruti: Computing the number of restricted solutions of linear congruences by using generalized Ramanujan sums and matrices (Extended Abstract) (1996).
- Eckford Cohen: A class of arithmetical functions, Proc. Nat. Acad. Sci. (USA) 41 (1955), 939-944.
- P. Haukkanen and Paul J. McCarthy: Sums of values of even functions, Portugal. Math. 48 (1991), 53-66.
- Paul J. McCarthy: Counting restricted solutions of a linear congruence, Nieuw Arch. Wish. (3) XXV (1977), 133-147.
- Paul J. McCarthy: Introduction to Arithmetical Functions, Springer-Verlag Universitext (1986).
- T. Nagell: Verallgemeinerung eines Satzes von Schemmel, Skr. Norske Vod. Akad. Oslo (Math. Class) I, No. 13 (1923), 23-25.
- C. A. Nicol and H. S. Vandiver: A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Nat. Acad. Sci. (USA) 40 (1954), 825-835.
- K. G. Ramanathan: Some applications of Ramanujan’s trigonometrical sum Cm(n), Proc. Ind. Acad. Sci. (A) 20 (1944), 62-69.
- David Rearick: A linear congruence with side conditions, Amer. Math. Monthly 70 (1963), 837-840.
- R. Sivaramakrishnan: Classical Theory of Arithmetic Functions, Marcel Dekker: Monographs and Text Books in Pure and Applied Mathematics No. 126 (1989).
- R. Vaidyanathaswamy: A remarkable property of integers (mod N) and its bearing on group theory, Proc. Ind. Acad. Sci. Section A (1937), 63-75.
Related papers
- Brown, S. (2024). Distance between consecutive elements of the multiplicative group of integers modulo n. Notes on Number Theory and Discrete Mathematics, 30(1), 81-99.
Cite this paper
Haukkanen, P., & Sivaramakrishnan, R. (1998). Nagell’s totient revisited. Notes on Number Theory and Discrete Mathematics, 4(3), 93-100.