Gabriel Mincu and Laurențiu Panaitopol
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 12, 2006, Number 1, Pages 21–24
Full paper (PDF, 127 Kb)
Details
Authors and affiliations
Gabriel Mincu
Faculty of Mathematics
Str. Academiei 14, RO-010014 Bucharest, Romania
Laurențiu Panaitopol
Faculty of Mathematics
Str. Academiei 14, RO-010014 Bucharest, Romania
Abstract
For x > 0 one define the function S(x) = min{m ∈ ℕ | x ≤ m!}. We prove that for x > √13! the interval (S(x), S(x2)) contains at least a prime number and that for real x, y > 0 the inequality S(x) + S(y) ≥ S(xy) holds true. We also study the convergence of a couple of number series involving S(x).
Keywords
- Sándor function
- Prime numbers
- Inequalities
- Series
AMS Classification
- 11A25
- 11A41
References
- C. Adiga and K. Taekyun. On a generalization of the Sándor function. Proc. of the Jangjeon Math. Soc No. 2 (2002), 121-124.
- H. Rohrbach and J Weiss. Zum finiten Fall des Bertrandschen Postulats. J. Reinen Angew. Math. 214/215 (1964) 432-440.
- J. Sándor, An additive analogue of the function S. Notes on Number Theory and Discrete Mathematics 7, no. 2 (2001), 91-95.
Related papers
- Sándor, J. (2001). An additive analogue of the function S. Notes on Number Theory and Discrete Mathematics, 7(2), 91-95.
- Siva Rama Prasad, V., & Anantha Reddy, P. (2022). On a generalization of a function of J. Sándor. Notes on Number Theory and Discrete Mathematics, 28(4), 692-697.
Cite this paper
Mincu, J., & Panaitopol, L. (2006). Properties of the Sándor function. Notes on Number Theory and Discrete Mathematics, 12(1), 21-24.