Arithmetical sequences for the exponents of composite Mersenne numbers

Simon Davis
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 20, 2014, Number 1, Pages 19–26
Full paper (PDF, 169 Kb)

Details

Authors and affiliations

Simon Davis
Research Foundation of Southern California
8837 Villa La Jolla Drive #13595
La Jolla, CA 92039, United States

Abstract

Arithmetical sequences for the exponents of composite Mersenne numbers are obtained from partitions into consecutive integers, and congruence relations for products of two Mersenne numbers suggest the existence of infinitely many composite integers of the form 2p − 1 with p prime. A lower probability for the occurrence of composite Mersenne numbers in arithmetical sequences is given.

Keywords

  • Composite Mersenne numbers
  • Exponents in arithmetical sequences

AMS Classification

  • 11B83
  • 11N13
  • 11P83

References

  1. Bang, A. S. Taltheoretische Undersogseler, Tidsskrift for Mathematik, Vol. 5, 1886, 70–80; 130–137.
  2. Birkhoff G. D., H. S. Vandiver, On the Integral Divisors of anbn, Ann. Math., Vol. 5, 1904, 173–180.
  3. Brillhart, J., D. H. Lehmer, et. al., Factorizations of bn − 1, b = 2, 3, 5, 6, 7, 10.11.12 up to high powers, Cont. Math., Vol. 22, American Mathematical Society, Providence, 1983.
  4. Euler, L. Observationes De Theoremate Quodam Fermatiano Aliisque ad Numeros Primos Spectantibus, Comm. Acad. Scientaiarum Petropolitanae, Vol. 6, 1738, 103–107.
  5. Israel, R. B. Solution of Problem 6384, Amer. Math. Monthly, Vol. 90, 1983, 650.
  6. Indlekofer, K.-H., A. Járai, Largest Known Twin Primes and Sophie Germain Primes, Math. Comp., Vol. 68, 1999, 1317–1324.
  7. Lagrange, J. L. Recherches D’Arithmetique, Nuov. Mém. Acad. Berlin, 1775, in Ouvres de Lagrange, Vol. 3, Gauthier-Villars, 1894, 695–795.
  8. Powell, B. Problem 6384, Numbers of the Form mpn, Amer. Math. Monthly, Vol. 89, 1982, 278.
  9. Ribenboim, P. The New Book of Prime Number Records, Springer-Verlag, New York, 1996.
  10. De la Rosa, B. Primes Powers and Partitions, Fibonacci Quart., Vol. 16, 1978, No. 6, 518–522.
  11. Zsigmondy, K. Zur Theorie der Potenzreste, Monatsh. Math., Vol. 3, 1892, 265–284.

Related papers

Cite this paper

Davis, S. (2014). Arithmetical sequences for the exponents of composite Mersenne numbers. Notes on Number Theory and Discrete Mathematics, 20(1), 19-26.

Comments are closed.