Prime sequences

J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 3, Pages 77–83
DOI: 10.7546/nntdm.2018.24.3.77-83
Full paper (PDF, 87 Kb)

Details

Authors and affiliations

J. V. Leyendekkers
Faculty of Science, The University of Sydney, NSW 2006, Australia

A. G. Shannon
Warrane College, The University of New South Wales, NSW 2033, Australia
Emeritus Professor, University of Technology Sydney, NSW 2007, Australia

Abstract

Primes are considered in three sequences, of which two are exclusive to specific primes. These sequences have the integers represented in the form nR where R is the right-end-digit of the prime and n represents the remaining left digits which are given by linear equations.

Keywords

  • Right-end-digits
  • Integer structure analysis
  • Modular rings
  • Prime-indexed numbers
  • Fibonacci numbers
  • Mersenne numbers

2010 Mathematics Subject Classification

  • 11A51
  • 11A07

References

  1. Cattani, C., & Ciancio, A. (2016) On the fractal distribution of primes and prime-indexed primes by the binary image analysis. Physica A: Statistical Mechanics and Its Applications. 460 (1), 222–229.
  2. Lemke Oliver, R. J., & Soundararajan, K. (2016) Unexpected biases in the distribution of consecutive primes. Preprint. Available online: https://arxiv.org/abs/1603.03720
  3. Leyendekkers, J. V., Shannon, A. G., & Rybak, J. M. (2007) Pattern Recognition: Modular Rings and Integer Structure. North Sydney: Raffles KvB Monograph No.9.
  4. Leyendekkers, J. V., & Shannon, A. G. (1998) The characteristics of primes and other integers within Modular Ring Z4 and in Class 14. Notes on Number Theory and Discrete Mathematics, 4 (1), 1–17.
  5. Leyendekkers, J. V., & Shannon, A. G. (1998) The characteristics of primes and other integers within Modular Ring Z4 and in Class 34. Notes on Number Theory and Discrete Mathematics, 4 (1), 18–37.
  6. Leyendekkers, J. V., & Shannon, A. G. (2002) Constraints on powers within the modular ring Z4 Part 1: Even powers. Notes on Number Theory and Discrete Mathematics, 8 (2), 41–57.
  7. Leyendekkers, J. V., & Shannon, A. G. (2004) Extensions of Euler’s prime generating functions. Notes on Number Theory and Discrete Mathematics, 10 (4), 100–105.
  8. Leyendekkers, J. V., & Shannon, A. G. (2008) Analysis of primes using REDs (right-enddigits) and integer structure. Notes on Number Theory and Discrete Mathematics, 14 (3), 1–10.
  9. Leyendekkers, J. V., & Shannon, A. G. (2008) The identification of rows of primes in the modular ring Z6. Notes on Number Theory and Discrete Mathematics, 14 (4), 10–15.
  10. Leyendekkers, J. V., A.G. Shannon, C.K. Wong. 2009) Spectra of primes. Proceedings of the Jangjeon Mathematical Society. 12 (1), 1–10.
  11. Leyendekkers, J. V., & Shannon, A. G. (2014) Fibonacci Numbers with Prime Subscripts: Digital Sums for Primes versus Composites. Notes on Number Theory and Discrete Mathematics, 20(3), 45–49.
  12. Knott, R. (2011) The Fibonacci Numbers, Available online: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibtable.html
  13. Leyendekkers, J. V., & Shannon, A. G. (2005) Fermat and Mersenne Numbers. Notes on Number Theory and Discrete Mathematics, 11 (4), 17–24.

Related papers

Cite this paper

Leyendekkers, J. V. & Shannon, A. G. (2018). Prime sequences. Notes on Number Theory and Discrete Mathematics, 24(3), 77-83, DOI: 10.7546/nntdm.2018.24.3.77-83.

Comments are closed.