Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 24, 2018, No. 3, 77–83 DOI: 10.7546/nntdm.2018.24.3.77-83

Prime sequences

J. V. Leyendekkers¹ and A. G. Shannon²

¹ Faculty of Science, The University of Sydney, NSW 2006, Australia e-mail: jeanvaldek@gmail.com

² Warrane College, The University of New South Wales, NSW 2033, Australia Emeritus Professor, University of Technology Sydney, NSW 2007, Australia e-mail: tshannon38@gmail.com

Received: 8 May 2018

Accepted: 30 August 2018

Abstract: Primes are considered in three sequences, of which two are exclusive to specific primes. These sequences have the integers represented in the form nR where R is the right-end-digit of the prime and n represents the remaining left digits which are given by linear equations. **Keywords:** Right-end-digits, Integer structure analysis, Modular rings, Prime-indexed numbers, Fibonacci numbers, Mersenne numbers.

2010 Mathematics Subject Classification: 11A51, 11A07.

1 Introduction

An unexpected bias in the distribution of consecutive primes [2] is clearly apparent in the rightend-digit (RED) considerations of their distributions [3-10]. Three main sequences of primes occur when presented in the form nR, where R is the RED of the prime and n represents the remaining left digits; for example, for the prime 177, n = 17 and R = 7. Thus RED-defined sequences are embedded in three principal formats:

$$n = 3t + 2 \tag{1.1}$$

$$n = 3t \tag{1.2}$$

$$n = 3t + 1 \tag{1.3}$$

The aim of this paper is to consider the non-randomness of these sequences of RED-defined primes; this is also illustrated with modular rings and integer sequence analysis [3–10].

2 The sequence n = 3t + 2

For this sequence, R = 1 or 7 will always yield a composite integer value, but a prime integer value is possible if their RED is 3 or 9 (see Table 1), which appear to have a high prime 'yield'.

n	2	5	8	11	14	17	20	23	26	29	32	35	38
t	0	1	2	3	4	5	6	7	8	9	10	11	12
<i>R</i> = 1	21	51	81	111	141	171	201	231	261	291	321	351	381
type	С	С	С	С	С	С	С	С	С	С	С	С	С
<i>R</i> = 7	27	57	87	117	147	177	207	237	267	297	327	357	387
type	С	С	С	С	С	С	С	С	С	С	С	С	С
<i>R</i> = 3	23	53	84	113	143	173	203	233	263	293	323	353	383
type	р	р	р	р	С	р	С	р	р	р	С	р	р
<i>R</i> = 9	29	59	89	119	149	179	209	239	269	299	329	359	389
type	р	р	р	С	р	р	С	р	р	С	С	р	р

Table 1. Primality for n = 3t + 2 (where *p* denotes prime, *c* denotes composite)

Many sequences can obviously be obtained from the t values in equation (1.1). For instance,

$$n = a + 21j \tag{2.1}$$

as illustrated in Table 2 for a = 2 + 3i, in which 3 and 9 REDs of primes are often both produced for a given *n*.

a	REDs of primes	Range	% of primes	Total % of primes
2	3	(23; 13883)	53	76
Z	9	(29; 13679)	52	70
5	3	(53; 10343)	54	82
5	9	(59; 10559)	52	02
8	3	(83; 10163)	50	72
0	9	(89; 10589)	50	12
11	3	(113; 23003)	46	46
14	3	(143; 10433)	54	80
14	9	(149; 8969)	48	00
17	3	(173; 10463)	62	74
17	9	(179; 10259)	60	74
20	9	(419; 10709)	56	56
23	3	(23; 13883)	53	76
23	9	(29; 13679)	52	70
26	3	(53; 10343)	54	82
20	9	(59; 10559)	52	02

Table 2. Equation (2.1) with a = 2 + 3i

3 The sequence n = 3t

Only primes with REDs equal to 1 and 7 are produced, since nR can be divided by 3. Similar forms of imbedded sequences apply as for (2 + 3t) (see Table 3). In this case, a = 3i in equation (2.1).

а	REDs of primes	Range	% of primes	Total % of primes	
0	1	(211; 10501)	48	48	
3	1	(31; 10531)	56	78	
5	7	(37; 9907)	50	70	
6	1	(61; 10141)	68	78	
0	7	(67; 10567)	50	/0	
9	7	(97; 10597)	48	48	
12	1	(331; 9781)	54	78	
12	7	(127; 10627)	58	70	
15	1	(151; 10651)	46	- 74	
15	7	(157; 10657)	56	/4	
18	1	(181; 9631)	52	80	
10	7	(397; 10687)	56	00	
21	1	(211; 10501)	48	48	
24	1	(31; 10531)	56	78	
24	7	(37; 9907)	50	/0	
27	1	(61; 10141)	68	- 78	
27	7	(67; 10567)	50	/0	

Table 3. Equation (2.1) with a = 3i

4 The sequence n = 3t + 1

This sequence produces primes with REDs 1, 3, 7 and 9. The embedded sequences produce primes for only three of the REDs for a given *a*. Since R = 5 can never be prime (except for n = 0), the imbedded sequences can produce primes with all four REDs 1, 3, 7, 9 (Table 4).

RED that is always composite for $n = i + 3t$	Imbedded sequences	REDs forming primes	R	% of primes produced	Total % of primes	
			1	0		
1	n = 16 + 21j	3, 7, 9	3	59	02	
1	t = 5 + 7i	5, 7, 9	7	54	93	
			9	44		
			1	35		
2	n = 13 + 21j $t = 4 + 7i$	1, 7, 9	3	0	90	
3			7	53		
			9	58	1	
			1	73		
			3	70		
5	n = 10 + 21j $t = 3 + 7i$	1, 3, 7, 9	5	0	95	
	l = J + ll		7	51		
			9	55		

(contd.)

RED that is always composite for $n = i + 3t$	Imbedded sequences	REDs forming primes	R	% of primes produced	Total % of primes	
			1	50		
7	n = 7 + 21j $t = 2 + 7i$	1, 3, 9	3	51	93	
/			7	0		
			9	52		
			1	50		
0	n = 4 + 21j	1 2 7	3	35	02	
9	$t = 1 + 7i^{\circ}$	1, 3, 7	7	52	93	
			9	0		

Table 4. High percentage of primes in imbedded sequences

5 'Large' primes

Since the sequences have genuine structural features they should be applicable independently of the size of the integers.

Some examples are set out in Tables 5 and 6 for what one might call large primes.

Prime	R	Major series	Imbedded series	Remarks
104395301	1	1 + 3t	n = 10 + 21j j = 497120	Integers with this $n \& R = 3, 7 \text{ or } 9$ could be prime
179426111	1	1 + 3 <i>t</i>	n = 1 + 21j j = 854410	Integers with this $n \& R = 3, 7 \text{ or } 9$ could be prime
179425033	3	1 + 3t	n = 19 + 21j j = 854404	Integers with this $n \& R = 1, 7 \text{ or } 9$ could be prime
179434483	3	1 + 3t	n = 19 + 21j j = 854404	Integers with this $n \& R = 7$ could be prime
179425177	7	3 <i>t</i>	n = 2 + 21j j = 854405	Integers with this $n \& R = 1$ could be prime
179434487	7	1 + 3t	n = 19 + 21j j = 854449	Integers with this $n \& R = 3$, or 9 could be prime
179425319	9	2 + 3t	n = 5 + 21j j = 854406	Integers with this $n \& R = 3$ could be prime
179426369	9	2 + 3 <i>t</i>	n = 5 + 21j j = 854411	Integer with this $n \& R = 3$ could be prime

Table 5. Imbedded series for 'large' primes

Prime	R	Major series	Imbedded series	Remarks
817504253838041641	1	3 <i>t</i>	n = 15 + 21j j = 3892877399228769	Integer with this $n \& R = 7$ could be prime
961748941982451653	3	2 + 3t	n = 2 + 21j j = 4579956866587103	Integer with this $n \& R = 9$ could be prime
275604547295075147	7	1 + 3t	n = 10 + 21j j = 1312402606167024	Integer with this $n \& R = 1, 3, 9$ could be prime
593441861613651349	9	1 + 3t	n = 1 + 21j j = 2825913626731673	Integer with this $n \& R = 1, 3, 7$ could be prime

Table 6. Imbedded series for 'large' primes

6 Fibonacci and Mersenne primes

6.1 Fibonacci primes

When R = 3, composites always occur when n = 2 + 3t for p > 29 and there is a bias towards primes for R = 7 (see Tables 7 and 8). Nine primes are formed from 25 *p* values (36%).

Of the 25 *p* values, twelve yield the Fibonacci number, F_p , [10] with n = 1 + 3t, six have n = 2 + 3t, and six have n = 3t (see Table 7) [12].

When n = 13 + 21j or 17 + 21j, all F_p are composite (see Table 7), and all F_p with R = 1 are composite for the range in this table. For instance, $F_{13} = 1$, 346, 269 = 557 × 2417: prime subscript but composite number, whereas $F_{29} = 514$, 229 which is prime: prime subscript and prime number. Similarly with $F_{13} = 233$. In this case, R = 3 as in Table 1, and a = 2 with a RED of 3 as in Table 2; that is, a = n - 2j = 23 - 21. The search for new near-patterns among primes and prime-indexed numbers goes on with a variety of interesting techniques [1].

р	F_p	R	n = f(t)	j	Туре
7	13	3	1 + 3t		р
11	89	9	2 + 3t	0	р
13	233	3	2 + 3t	1	р
17	1597	7	3 <i>t</i>	7	р
19	4181	1	1 + 3t	19	С
23	28657	7	3 <i>t</i>	136	р
29	514229	9	2 + 3t	2448	р
31	1346269	9	1 + 3t	6410	С
37	24157817	7	1 + 3t	15037	С
41	165580141	1	3 <i>t</i>	788476	С
43	433494437	7	1 + 3t	2064259	р
47	2971215073	3	1 + 3t	14148643	р
53	53316291173	3	2 + 3t	253887100	С
59	956722026041	1	1 + 3t	4555819171	С

(contd.)

р	F_p	R	n = f(t)	j	Туре
61	2504730781961	1	1 + 3t	1927289438	С
67	44945570212853	3	2 + 3t	214026524823	С
71	308061521170129	9	1 + 3t	1466959624619	С
73	806515533049393	3	1 + 3t	3840550157378	С
79	14472334024676221	1	3 <i>t</i>	6891587607982	С
83	99194853094755497	7	1 + 3t	472356443308359	р
89	1779979416004714189	9	1 + 3t	8476092457165305	С
97	83621143489848422977	7	3 <i>t</i>	3983195921380230	С
101	573147844013817084101	1	1 + 3t	2729275447684843257	С
103	1500520536206896083277	7	3 <i>t</i>	7145335886699505158	С
107	10284720757613717413913	3	2 + 3t	48974860750541511494	С

Table 7. Fibonacci types ($5 \le F_p \le 10284720757613717413913$)

R	2 + 3t	3 <i>t</i>	1 + 3t	Total
1	_	_	_	0
3	1	_	2	3
7	_	2	2	4
9	2	-	-	2

Table 8. Numbers of R

6.2 Mersenne primes

The Mersenne numbers, $M_m = 2^m - 1$ (*m* odd) have been known for centuries with interest centred on which *m* yield primes [12]. These primes are found in the very large number domain, yet the REDs can only be 1 or 7 (2^p REDs can only be 2 or 8). Moreover, in the *nR* form *n* always has the form 3*t*.

7 Final comments

The largest known primes (Table 9) are expressed in the form

$$p = 2^m - 1. (6.1)$$

Since *m* for these cases falls in class $\overline{1}_4$ ($m = 4r_1 + 1$), the RED of 2^m will be 2 [13] so that RED of $2^m - 1 = 1$.

No. of digits $\times 10^6$	$m \in \overline{1}_4$	2^{4r_1+1}	RED of prime
22.3	74207281	2	1
17.4	51885161	2	1
13.0	43112609	2	1
13.0	42643801	2	1

 Table 9. REDs of Mersenne primes

These primes can fall in (n = 3t) or (n = 1 + 3t) sequences, but $n \neq 16 + 21j$ (see Table 4).

References

- Cattani, C., & Ciancio, A. (2016) On the fractal distribution of primes and prime-indexed primes by the binary image analysis. *Physica A: Statistical Mechanics and Its Applications*. 460 (1), 222–229.
- [2] Lemke Oliver, R. J., & Soundararajan, K. (2016) Unexpected biases in the distribution of consecutive primes. Preprint. Available online: https://arxiv.org/abs/1603.03720
- [3] Leyendekkers, J. V., Shannon, A. G., & Rybak, J. M. (2007) *Pattern Recognition: Modular Rings and Integer Structure*. North Sydney: Raffles KvB Monograph No.9.
- [4] Leyendekkers, J. V., & Shannon, A. G. (1998) The characteristics of primes and other integers within Modular Ring Z_4 and in Class $\overline{1}_4$. *Notes on Number Theory and Discrete Mathematics*, 4 (1), 1–17.
- [5] Leyendekkers, J. V., & Shannon, A. G. (1998) The characteristics of primes and other integers within Modular Ring Z₄ and in Class 3₄. *Notes on Number Theory and Discrete Mathematics*, 4 (1), 18–37.
- [6] Leyendekkers, J. V., & Shannon, A. G. (2002) Constraints on powers within the modular ring Z₄ Part 1: Even powers. *Notes on Number Theory and Discrete Mathematics*, 8 (2), 41–57.
- [7] Leyendekkers, J. V., & Shannon, A. G. (2004) Extensions of Euler's prime generating functions. *Notes on Number Theory and Discrete Mathematics*, 10 (4), 100–105.
- [8] Leyendekkers, J. V., & Shannon, A. G. (2008) Analysis of primes using REDs (right-enddigits) and integer structure. *Notes on Number Theory and Discrete Mathematics*, 14 (3), 1–10.
- [9] Leyendekkers, J. V., & Shannon, A. G. (2008) The identification of rows of primes in the modular ring *Z*₆. *Notes on Number Theory and Discrete Mathematics*, 14 (4), 10–15.
- [10] Leyendekkers, J. V., A.G. Shannon, C.K. Wong. 2009) Spectra of primes. *Proceedings of the Jangjeon Mathematical Society*. 12 (1), 1–10.
- [11] Leyendekkers, J. V., & Shannon, A. G. (2014) Fibonacci Numbers with Prime Subscripts: Digital Sums for Primes versus Composites. *Notes on Number Theory and Discrete Mathematics*, 20(3), 45–49.
- [12] Knott, R. (2011) The Fibonacci Numbers, Available online: http://www.maths. surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibtable.html
- [13] Leyendekkers, J. V., & Shannon, A. G. (2005) Fermat and Mersenne Numbers, *Notes on Number Theory and Discrete Mathematics*, 11 (4), 17–24.