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1 Introduction 

An unexpected bias in the distribution of consecutive primes [2] is clearly apparent in the right-

end-digit (RED) considerations of their distributions [3-10]. Three main sequences of primes 

occur when presented in the form nR, where R is the RED of the prime and n represents the 

remaining left digits; for example, for the prime 177, n = 17 and R = 7. Thus RED-defined 

sequences are embedded in three principal formats: 

 n = 3t + 2 (1.1) 

 n = 3t (1.2) 

 n = 3t + 1 (1.3) 

The aim of this paper is to consider the non-randomness of these sequences of RED-defined 

primes; this is also illustrated with modular rings and integer sequence analysis [3–10]. 
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2 The sequence n = 3t + 2 

For this sequence, R = 1 or 7 will always yield a composite integer value, but a prime integer 

value is possible if their RED is 3 or 9 (see Table 1), which appear to have a high prime ‘yield’. 

 

n 2 5 8 11 14 17 20 23 26 29 32 35 38 

t 0 1 2 3 4 5 6 7 8 9 10 11 12 

R = 1 21 51 81 111 141 171 201 231 261 291 321 351 381 

type c c c c c c c c c c c c c 

R = 7 27 57 87 117 147 177 207 237 267 297 327 357 387 

type c c c c c c c c c c c c c 

R = 3 23 53 84 113 143 173 203 233 263 293 323 353 383 

type p p p p c p c p p p c p p 

R = 9 29 59 89 119 149 179 209 239 269 299 329 359 389 

type p p p c p p c p p c c p p 

Table 1. Primality for n = 3t + 2 (where p denotes prime, c denotes composite) 

Many sequences can obviously be obtained from the t values in equation (1.1). For instance,  

  n = a + 21j (2.1) 

as illustrated in Table 2 for a = 2 + 3i, in which 3 and 9 REDs of primes are often both produced 

for a given n. 

 

a REDs of primes Range % of primes Total % of primes 
 

2 
3 (23; 13883) 53 

76 
9 (29; 13679) 52 

5 
3 (53; 10343) 54 

82 
9 (59; 10559) 52 

8 
3 (83; 10163) 50 

72 
9 (89; 10589) 50 

11 3 (113; 23003) 46 46 

14 
3 (143; 10433) 54 

80 
9 (149; 8969) 48 

17 
3 (173; 10463) 62 

74 
9 (179; 10259) 60 

20 9 (419; 10709) 56 56 

23 
3 (23; 13883) 53 

76 
9 (29; 13679) 52 

26 
3 (53; 10343) 54 

82 
9 (59; 10559) 52 

Table 2. Equation (2.1) with a = 2 + 3i 

3 The sequence n = 3t 

Only primes with REDs equal to 1 and 7 are produced, since nR can be divided by 3. Similar 

forms of imbedded sequences apply as for (2 + 3t) (see Table 3). In this case, a = 3i in equation 

(2.1). 
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a REDs of primes Range % of primes Total % of primes 
 

0 1 (211; 10501) 48 48 

3 
1 (31; 10531) 56 

78 
7 (37; 9907) 50 

6 
1 (61; 10141) 68 

78 
7 (67; 10567) 50 

9 7 (97; 10597) 48 48 

12 
1 (331; 9781) 54 

78 
7 (127; 10627) 58 

15 
1 (151; 10651) 46 

74 
7 (157; 10657) 56 

18 
1 (181; 9631) 52 

80 
7 (397; 10687) 56 

21 1 (211; 10501) 48 48 

24 
1 (31; 10531) 56 

78 
7 (37; 9907) 50 

27 
1 (61; 10141) 68 

78 
7 (67; 10567) 50 

Table 3. Equation (2.1) with a = 3i 

4 The sequence n = 3t + 1 

This sequence produces primes with REDs 1, 3, 7 and 9. The embedded sequences produce 

primes for only three of the REDs for a given a. Since R = 5 can never be prime (except for 

n = 0), the imbedded sequences can produce primes with all four REDs 1, 3, 7, 9 (Table 4). 

 

RED that is  

always composite 

for n = i + 3t 

Imbedded 

sequences 

REDs 

forming 

primes 

R 
% of primes 

produced 

Total %  

of primes 

 

1 
n = 16 + 21j 

t = 5 + 7i 
3, 7, 9 

1 0 

93 
3 59 

7 54 

9 44 

3 
n = 13 + 21j 

t = 4 + 7i 
1, 7, 9 

1 35 

90 
3 0 

7 53 

9 58 

5 
n = 10 + 21j 

t = 3 + 7i 
1, 3, 7, 9 

1 73 

95 

3 70 

5 0 

7 51 

9 55 

(contd.) 
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RED that is  

always composite 

for n = i + 3t 

Imbedded 

sequences 

REDs 

forming 

primes 

R 
% of primes 

produced 

Total %  

of primes 

 

7 
n = 7 + 21j 

t = 2 + 7i 
1, 3, 9 

1 50 

93 
3 51 

7 0 

9 52 

9 
n = 4 + 21j 

t = 1 + 7i 
1, 3, 7 

1 50 

93 
3 35 

7 52 

9 0 

Table 4. High percentage of primes in imbedded sequences 

5 ‘Large’ primes 

Since the sequences have genuine structural features they should be applicable independently of 

the size of the integers.  

Some examples are set out in Tables 5 and 6 for what one might call large primes. 

Prime R Major series Imbedded series Remarks 

 

104395301 1 1 + 3t 
n = 10 + 21j 

j = 497120 

Integers with this n & R = 3, 7 or 9 

could be prime 

179426111 1 1 + 3t 
n = 1 + 21j 

j = 854410 

Integers with this n & R = 3, 7 or 9 

could be prime 

179425033 3 1 + 3t 
n = 19 + 21j 

j = 854404 

Integers with this n & R = 1, 7 or 9 

could be prime 

179434483 3 1 + 3t 
n = 19 + 21j 

j = 854404 

Integers with this n & R = 7 

could be prime 

179425177 7 3t 
n = 2 + 21j 

j = 854405 

Integers with this n & R = 1 

could be prime 

179434487 7 1 + 3t 
n = 19 + 21j 

j = 854449 

Integers with this n & R = 3, or 9 

could be prime 

179425319 9 2 + 3t 
n = 5 + 21j 

j = 854406 

Integers with this n & R = 3 

could be prime 

179426369 9 2 + 3t 
n = 5 + 21j 

j = 854411 

Integer with this n & R = 3 

could be prime 

Table 5. Imbedded series for ‘large’ primes 
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Prime R 
Major 

series 
Imbedded series Remarks 

 

817504253838041641 1 3t 
n = 15 + 21j 

j = 3892877399228769 

Integer with this n & R = 7  

could be prime 

961748941982451653 3 2 + 3t 
n = 2 + 21j 

j = 4579956866587103 

Integer with this n & R = 9 

could be prime 

275604547295075147 7 1 + 3t 
n = 10 + 21j 

j = 1312402606167024 

Integer with this n & R = 1, 3, 9 

could be prime 

593441861613651349 9 1 + 3t 
n = 1 + 21j 

j = 2825913626731673 

Integer with this n & R = 1, 3, 7 

could be prime 

Table 6. Imbedded series for ‘large’ primes 

6 Fibonacci and Mersenne primes 

6.1 Fibonacci primes 

When R = 3, composites always occur when n = 2 + 3t for p > 29 and there is a bias towards 

primes for R = 7 (see Tables 7 and 8). Nine primes are formed from 25 p values (36%).  

Of the 25 p values, twelve yield the Fibonacci number, Fp, [10] with n = 1 + 3t, six have 

n = 2 + 3t, and six have n = 3t (see Table 7) [12].  

When n = 13 + 21j or 17 + 21j, all Fp are composite (see Table 7), and all Fp with R = 1 are 

composite for the range in this table. For instance, F13 = 1, 346, 269 = 557 × 2417: prime subscript 

but composite number, whereas F29 = 514, 229 which is prime: prime subscript and prime 

number. Similarly with F13 = 233. In this case, R = 3 as in Table 1, and a = 2 with a RED of 3 as 

in Table 2; that is, a = n – 2j = 23 – 21. The search for new near-patterns among primes and 

prime-indexed numbers goes on with a variety of interesting techniques [1]. 

 

p Fp R n = f(t) j Type 
 

7 13 3 1 + 3t --- p 

11 89 9 2 + 3t 0 p 

13 233 3 2 + 3t 1 p 

17 1597 7 3t 7 p 

19 4181 1 1 + 3t 19 c 

23 28657 7 3t 136 p 

29 514229 9 2 + 3t 2448 p 

31 1346269 9 1 + 3t 6410 C 

37 24157817 7 1 + 3t 15037 c 

41 165580141 1 3t 788476 c 

43 433494437 7 1 + 3t 2064259 p 

47 2971215073 3 1 + 3t 14148643 p 

53 53316291173 3 2 + 3t 253887100 c 

59 956722026041 1 1 + 3t 4555819171 c 

(contd.) 
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p Fp R n = f(t) j Type 
 

61 2504730781961 1 1 + 3t 1927289438 c 

67 44945570212853 3 2 + 3t 214026524823 c 

71 308061521170129 9 1 + 3t 1466959624619 c 

73 806515533049393 3 1 + 3t 3840550157378 c 

79 14472334024676221 1 3t 6891587607982 c 

83 99194853094755497 7 1 + 3t 472356443308359 p 

89 1779979416004714189 9 1 + 3t 8476092457165305 c 

97 83621143489848422977 7 3t 3983195921380230 c 

101 573147844013817084101 1 1 + 3t 2729275447684843257 c 

103 1500520536206896083277 7 3t 7145335886699505158 c 

107 10284720757613717413913 3 2 + 3t 48974860750541511494 c 

Table 7. Fibonacci types (5 ≤  Fp ≤ 10284720757613717413913) 

R 2 + 3t 3t 1 + 3t Total 
 

1 – – – 0 

3 1 – 2 3 

7 – 2 2 4 

9 2 – – 2 

Table 8. Numbers of R 

6.2 Mersenne primes 

The Mersenne numbers, Mm = 2m – 1 (m odd) have been known for centuries with interest centred 

on which m yield primes [12]. These primes are found in the very large number domain, yet the 

REDs can only be 1 or 7 (2p REDs can only be 2 or 8). Moreover, in the nR form n always has 

the form 3t. 

7 Final comments 

The largest known primes (Table 9) are expressed in the form 

 p = 2m – 1. (6.1) 

Since m for these cases falls in class ( )4 11 4 1m r= + , the RED of 2m will be 2 [13] so that RED of  

2m – 1 = 1. 

 

No. of digits ×××× 106 ∈ 41m  14r +1
2  RED of prime 

 

22.3 74207281 2 1 

17.4 51885161 2 1 

13.0 43112609 2 1 

13.0 42643801 2 1 

Table 9. REDs of Mersenne primes 

These primes can fall in (n = 3t) or (n = 1 + 3t) sequences, but n ≠ 16 + 21j (see Table 4). 
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