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1 Introduction

An unexpected bias in the distribution of consecutive primes [2] is clearly apparent in the right-
end-digit (RED) considerations of their distributions [3-10]. Three main sequences of primes
occur when presented in the form nR, where R is the RED of the prime and n represents the
remaining left digits; for example, for the prime 177, n = 17 and R = 7. Thus RED-defined
sequences are embedded in three principal formats:

n=3t+2 (1.1)
n=3t (1.2)
n=3t+1 (1.3)

The aim of this paper is to consider the non-randomness of these sequences of RED-defined
primes; this is also illustrated with modular rings and integer sequence analysis [3—10].
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2 The sequencen =3t + 2

For this sequence, R = 1 or 7 will always yield a composite integer value, but a prime integer
value is possible if their RED is 3 or 9 (see Table 1), which appear to have a high prime ‘yield’.

n 2 5 8 1 | 14 | 17 | 20 | 23 | 26 | 29 | 32 | 35 | 38

t 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12

R=1 21 | 51 | 81 | 111 | 141 | 171 | 201 | 231 | 261 | 291 | 321 | 351 | 381
type c c c c c c c c c c c c c

R=17 27 | 57 | 87 | 117 | 147 | 177 | 207 | 237 | 267 | 297 | 327 | 357 | 387
type c c c c c c c c c c c c c

R=3 23 | 53 | 84 | 113 | 143 | 173 | 203 | 233 | 263 | 293 | 323 | 353 | 383
type p |l p | p | P c | p c | plp | P c | p|p

R=9 29 | 59 | 89 | 119 | 149 | 179 | 209 | 239 | 269 | 299 | 329 | 359 | 389
type p |l p | p c | p | p c | p | p c c | p|p

Table 1. Primality for n = 3¢ + 2 (where p denotes prime, ¢ denotes composite)

Many sequences can obviously be obtained from the 7 values in equation (1.1). For instance,
n=a+?2lj (2.1)

as illustrated in Table 2 for a = 2 + 3i, in which 3 and 9 REDs of primes are often both produced
for a given n.

a REDs of primes Range % of primes Total % of primes
3 (23; 13883) 53

2 9 (29; 13679) 52 76

5 3 (53; 10343) 54 22
9 (59; 10559) 52

3 3 (83; 10163) 50 7
9 (89; 10589) 50

11 3 (113;23003) 46 46
3 (143; 10433) 54

14 9 (149; 8969) 48 80
3 (173; 10463) 62

17 9 (179; 10259) 60 74

20 9 (419; 10709) 56 56
3 (23; 13883) 53

23 9 (29; 13679) 52 76
3 (53; 10343) 54

26 9 (59; 10559) 52 82

Table 2. Equation (2.1) witha =2 + 3i

3 The sequence n = 3t

Only primes with REDs equal to 1 and 7 are produced, since nR can be divided by 3. Similar
forms of imbedded sequences apply as for (2 + 3¢) (see Table 3). In this case, a = 3i in equation
(2.1).
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a REDs of primes Range % of primes | Total % of primes
1 (211; 10501) 48 48
1 (31; 10531) 56

3 78
7 (37;9907) 50
1 (61;10141) 68

7

6 7 (67; 10567) 50 8

9 7 (97; 10597) 48 48
1 (331;9781) 54

12 7
7 (127; 10627) 58 8
1 (151; 10651) 46

15 7 (157; 10657) 56 7
1 (181;9631) 52

18 80
7 (397; 10687) 56

21 1 (211; 10501) 48 48
1 (31; 10531) 56

24 7
7 (37;9907) 50 8
1 (61;10141) 68

27 7
7 (67; 10567) 50 8

Table 3. Equation (2.1) with a = 3i

4 The sequencen =3t +1

This sequence produces primes with REDs 1, 3, 7 and 9. The embedded sequences produce
primes for only three of the REDs for a given a. Since R = 5 can never be prime (except for
n = 0), the imbedded sequences can produce primes with all four REDs 1, 3, 7, 9 (Table 4).

RED that is . Imbedded RE].)S % of primes Total %
always composite forming R .
, sequences . produced of primes
forn =i+ 3t primes

1 0
= ' 3 59

1 n=16+2lj 3,7,9 93
t=5+7i 7 54
9 44
1 35
n=13+2lj 3 0

3 f= AT 1,7,9 - =3 90
9 58
1 73
_ 3 70

5 n=10+217 1y 379 [ s 0 95

t=3+7i
7 51
9 55
(contd.)
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LGB . Imbedded RE].)S % of primes Total %
always composite forming R .
. sequences . produced of primes
forn =i+ 3t primes
1 50
= 1 3 51
7 n=7+2lj 1,3,9 93
t=2+7i 7 0
9 52
1 50
n=4+21j 3 35
? t=1+7i 13,7 7 52 93
9 0

5 ‘Large’ primes

Since the sequences have genuine structural features they should be applicable independently of
the size of the integers.

Table 4. High percentage of primes in imbedded sequences

Some examples are set out in Tables 5 and 6 for what one might call large primes.

Prime R

Major series

Imbedded series

Remarks

e R e A
e R B B
e R R B L
moss | 5 | e | Ry | s
s | 7w | I e
el R B e A
17945319 |9 | 2+ [ossu0n | coudbeprime
179426369 9 243t 7: 85524211{' ir(l)fl%:lelr)gv;r}il r;l;is n&R=3

Table 5. Imbedded series for ‘large’ primes
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Prime R li?ig: Imbedded series Remarks

n=15+21j Integer with thisn & R="7
817504253838041641 1 1| 31+ _ 3897877399228769 | could be prime

n=2+2lj Integer with thisn & R=9
961748941982451653 | 3 1 2431 | i _ 4579956866587103 | could be prime

n=10+21j Integer with thisn & R=1, 3,9
275604547295075147 | 71 1431 | i 1319400606167024 | could be prime

n=1+2lj Integer with thisn & R=1, 3,7
S93441861613651349 | 9 1 1431 | i _ 1895013626731673 | could be prime

Table 6. Imbedded series for ‘large’ primes

6 Fibonacci and Mersenne primes

6.1 Fibonacci primes

When R = 3, composites always occur when n = 2 + 3¢ for p > 29 and there is a bias towards
primes for R =7 (see Tables 7 and 8). Nine primes are formed from 25 p values (36%).

Of the 25 p values, twelve yield the Fibonacci number, Fj, [10] with n = 1 + 3¢, six have
n =2 + 3t, and six have n = 3¢ (see Table 7) [12].

When n =13 + 21j or 17 + 21j, all F, are composite (see Table 7), and all F, with R =1 are
composite for the range in this table. For instance, F3 =1, 346, 269 = 557 X 2417: prime subscript
but composite number, whereas F29 = 514, 229 which is prime: prime subscript and prime
number. Similarly with Fi3 = 233. In this case, R = 3 as in Table 1, and a = 2 with a RED of 3 as
in Table 2; that is, a = n — 2j = 23 — 21. The search for new near-patterns among primes and
prime-indexed numbers goes on with a variety of interesting techniques [1].
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I4 F, R | n=f) J Type
7 13 3 1+ 3¢ -—- p
11 891 9 2+ 3t 0 )2
13 233 | 3 2+ 3t 1 p
17 1597 | 7 3t 7 p
19 4181 | 1 1+ 3¢ 19 c
23 28657 | 7 3t 136 p
29 514229 | 9 2+ 3t 2448 p
31 1346269 | 9 1+ 3¢ 6410 C
37 24157817 | 7 1+ 3¢ 15037 c
41 165580141 | 1 3t 788476 c
43 433494437 | 7 1+ 3¢ 2064259 p
47 2971215073 | 3 1+3¢ 14148643 p
53 53316291173 | 3 2 + 3t 253887100 c
59 956722026041 | 1 1+3¢ 4555819171 c
(contd.)




p Fy R n = f(t) J Type
61 2504730781961 | 1 1+3¢ 1927289438 | ¢
67 44945570212853 | 3 2+ 3¢ 214026524823 | ¢
71 308061521170129 | 9 1+3¢ 1466959624619 | ¢
73 806515533049393 | 3 1+3¢ 3840550157378 | ¢
79 14472334024676221 | 1 3t 6891587607982 | ¢
83 99194853094755497 | 7 1+3¢ 472356443308359 | p
89 1779979416004714189 | 9 1+3¢ 8476092457165305 | ¢
97 83621143489848422977 | 7 3t 3983195921380230 | ¢
101 573147844013817084101 | 1 1+ 3¢ 2729275447684843257 | ¢
103 1500520536206896083277 | 7 3t 7145335886699505158 | ¢
107 10284720757613717413913 | 3 2+ 3¢ 48974860750541511494 | ¢

Table 7. Fibonacci types (5 < F), < 10284720757613717413913)

R 2+3t | 3t 1+3t | Total
1 _ — - 0
3 1 — 2 3
7 _ 2 2 4
9 2 _ _ 2

Table 8. Numbers of R

6.2 Mersenne primes

The Mersenne numbers, M,, = 2™ — 1 (m odd) have been known for centuries with interest centred
on which m yield primes [12]. These primes are found in the very large number domain, yet the
REDs can only be 1 or 7 (2” REDs can only be 2 or 8). Moreover, in the nR form n always has
the form 3z.

7 Final comments

The largest known primes (Table 9) are expressed in the form

p=2"-1. (6.1)
Since m for these cases falls in class 14 (m=4r,+1), the RED of 2" will be 2 [13] so that RED of
2m—1=1.

No. of digits x 10° me 1, g+t RED of prime
223 74207281 2 1
17.4 51885161 2 1
13.0 43112609 2 1
13.0 42643801 2 1

Table 9. REDs of Mersenne primes
These primes can fall in (n = 3¢) or (n = 1 + 3¢) sequences, but n # 16 + 21j (see Table 4).
82



References

[1]

[6]

Cattani, C., & Ciancio, A. (2016) On the fractal distribution of primes and prime-indexed
primes by the binary image analysis. Physica A: Statistical Mechanics and Its Applications.
460 (1), 222-229.

Lemke Oliver, R. J., & Soundararajan, K. (2016) Unexpected biases in the distribution of
consecutive primes. Preprint. Available online: https://arxiv.org/abs/1603.03720

Leyendekkers, J. V., Shannon, A. G., & Rybak, J. M. (2007) Pattern Recognition: Modular
Rings and Integer Structure. North Sydney: Raffles KvB Monograph No.9.

Leyendekkers, J. V., & Shannon, A. G. (1998) The characteristics of primes and other
integers within Modular Ring Z4 and in Class 1_4. Notes on Number Theory and Discrete
Mathematics, 4 (1), 1-17.

Leyendekkers, J. V., & Shannon, A. G. (1998) The characteristics of primes and other
integers within Modular Ring Z4 and in Class 34. Notes on Number Theory and Discrete
Mathematics, 4 (1), 18-37.

Leyendekkers, J. V., & Shannon, A. G. (2002) Constraints on powers within the modular ring
Z4 Part 1: Even powers. Notes on Number Theory and Discrete Mathematics, 8 (2),
41-57.

Leyendekkers, J. V., & Shannon, A. G. (2004) Extensions of Euler’s prime generating
functions. Notes on Number Theory and Discrete Mathematics, 10 (4), 100—105.

Leyendekkers, J. V., & Shannon, A. G. (2008) Analysis of primes using REDs (right-end-
digits) and integer structure. Notes on Number Theory and Discrete Mathematics, 14 (3),
1-10.

Leyendekkers, J. V., & Shannon, A. G. (2008) The identification of rows of primes in the
modular ring Zs. Notes on Number Theory and Discrete Mathematics, 14 (4), 10-15.

Leyendekkers, J. V., A.G. Shannon, C.K. Wong. 2009) Spectra of primes. Proceedings of the
Jangjeon Mathematical Society. 12 (1), 1-10.

Leyendekkers, J. V., & Shannon, A. G. (2014) Fibonacci Numbers with Prime Subscripts:
Digital Sums for Primes versus Composites. Notes on Number Theory and Discrete
Mathematics, 20(3), 45-49.

Knott, R. (2011) The Fibonacci Numbers, Available online: http://www.maths.
surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibtable.html

Leyendekkers, J. V., & Shannon, A. G. (2005) Fermat and Mersenne Numbers, Notes on
Number Theory and Discrete Mathematics, 11 (4), 17-24.

83



