New index matrix representations of operations over natural numbers

Lilija Atanassova
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 1, Pages 53–60
DOI: 10.7546/nntdm.2018.24.1.53-60
Full paper (PDF, 166 Kb)

Details

Authors and affiliations

Lilija Atanassova
Institute of Information and Communication Technologies
Bulgarian Academy of Sciences
2 Acad. Georgi Bonchev Str., Sofia 1113, Bulgaria

Abstract

Two new operations over index matrices are introduced. Their possible application in number theory is discussed and illustrated with examples related to the canonical representation of the natural numbers and with two extended Fibonacci sequences.

Keywords

  • Fibonacci sequence
  • Index matrix
  • Natural number

2010 Mathematics Subject Classification

  • 11B39

References

  1. Atanassov, K. (1984) Conditions in Generalized nets. Proc. of the XIII Spring Conf. of the Union of Bulg. Math., Sunny Beach, April 1984, 219–226.
  2. Atanassov, K. (1984) On one problem of A. Mullin. Bulletin of Number Theory and Related Topics, VIII, 3, 1–5.
  3. Atanassov, K. (1987) New integer functions, related to “π” and “φ” functions. Bulletin of Number Theory and Related Topics, XI, 1, 3–26.
  4. Atanassov, K. (1987) Generalized index matrices. Compt. Rend. de l’Academie Bulgare des Sciences, 40, 11, 15–18.
  5. Atanassov, K. (2014) Index Matrices: Towards an Augmented Matrix Calculus, Springer, Cham.
  6. Atanassov, K., Atanassova, L., & Sasselov, D. (1985) A new perspective to the generalization of the Fibonacci sequence, Fibonacci Quarterly, 23, 1, 21–28.
  7. Atanassov, K., Sotirova, E., & Bureva, V. (2013) On index matrices. Part 4: New operations over index matrices. Advanced Studies in Contemporary Mathematics, 23, 3, 547–552.
  8. Leyendekkers, J. V., Shannon, A. G., & Rybak, J. (2007) Pattern recognition: Modular Rings & Integer Structure. Raffles KvB Monograph No. 9, North Sydney.
  9. Mitrinovic, D. S., Sándor, J., & Crstici, B. (1995) Handbook of Number Theory, Kluwer, Dordrecht.
  10. Nagell, T. (1950) Introduction to Number Theory, John Wiley & Sons, New York.

Related papers

Cite this paper

Atanassova, L. (2018). New index matrix representations of operations over natural numbers. Notes on Number Theory and Discrete Mathematics, 24(1), 53-60, DOI: 10.7546/nntdm.2018.24.1.53-60.

Comments are closed.