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1 Introduction

The idea of the concept of an Index Matrix (IM) was discussed for the first time in [1] and
introduced formally in [4]. There, the first operations over IMs were given. The basic results,
related to IMs, were included in [5]. In this book, as examples, IM-representations of some
operations in number theory were described.

In the present paper, extensions of some operations discussed in [5] are given and new exam-
ples are described.

2 Preliminaries

Following [5], we define the concept of an IM and some operations over them.
Let I be a fixed set of indices andR be the set of real numbers. Let operations ◦, ∗ : R×R →

R be fixed. For example, they can be ◦, ∗ ∈ {×,+,max,min}, or others.
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Let the standard sets K and L satisfy the condition: K,L ⊂ I. Let over these sets, the
standard set-theoretical operations be defined. We call “IM with real number elements” (R-IM)
the object:

[K,L, {aki,lj}] ≡

l1 l2 . . . ln

k1 ak1,l1 ak1,l2 . . . ak1,ln
k2 ak2,l1 ak2,l2 . . . ak2,ln
...

...
... . . . ...

km akm,l1 akm,l2 . . . akm,ln

,

where
K = {k1, k2, . . . , km} and L = {l1, l2, . . . , ln},

and for 1 ≤ i ≤ m, and for 1 ≤ j ≤ n : aki,lj ∈ R.
Let the IM A be given and let k0 6∈ K and l0 6∈ L be two indices. Now, following [7] and [5],

we introduce the following four aggregation operations over it:

Max-row-aggregation

ρmax(A, k0) =
l1 l2 . . . ln

k0 max
1≤i≤m

aki,l1 max
1≤i≤m

aki,l2 . . . max
1≤i≤m

aki,ln
,

Min-row-aggregation

ρmin(A, k0) =
l1 l2 . . . ln

k0 min
1≤i≤m

aki,l1 min
1≤i≤m

aki,l2 . . . min
1≤i≤m

aki,ln
,

Sum-row-aggregation

ρsum(A, k0) =
l1 l2 . . . ln

k0
m∑
i=1

aki,l1
m∑
i=1

aki,l2 . . .
m∑
i=1

aki,ln
,

Average-row-aggregation

ρave(A, k0) =
l1 l2 . . . ln

k0
1
m

m∑
i=1

aki,l1
1
m

m∑
i=1

aki,l2 . . . 1
m

m∑
i=1

aki,ln
,

3 Main results

As it was mentioned in [5], it is well-known (see, e.g., [9, 10]) that each natural number m has

a canonical representation m =
k∏
i=1

pαi
i , where k, α1, α2, . . . , αk ≥ 1 are natural numbers and

p1, p2, . . . , pk are different prime numbers. Let us always suppose that p1 < p2 < . . . < pk. This
condition is only for convinience, because there is no specific an order of the rows and columns
in an IM, but these are labeled by indices.
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Then, as it is shown in [5], the natural number m has the following IM-interpretation:

IM(m, a) =
p1 p2 . . . pk

a α1 α2 . . . αk
,

where “a” is an arbitrary symbol, in a particular case – the same “m”. In this case, for brevity, we
write IM(m,m) = IM(m).

In [2] the function set is introduced for the above number m by set(m) = {p1, . . . , pk}.
First, we generalize the examples from [5]. Let us have s natural numbersN1, N2, . . . , Ns and

let
s⋃
i=1

set(Ni) = {p1, . . . , pk}.

Therefore, for each i (1 ≤ i ≤ s) : Ni =
k∏
j=1

p
αi,j

j , where αi,j ≥ 0 and
k∑
j=1

αi,j ≥ 1. Now, we

construct the IM

IM(N1, . . . , Ns) =

p1 p2 . . . pk

N1 α1,1 α1,2 . . . α1,k

...
...

... . . . ...
Ns αs,1 αs,2 . . . αs,k

.

For example, if N1 = 12, N2 = 27, N3 = 30, N4 = 150, then these numbers have the
canonical representation N1 = 22 × 3, N2 = 33, N3 = 2 × 3 × 5, N4 = 2 × 3 × 52 and IM-
representation

IM(N1, N2, N3, N4) =

2 3 5

N1 2 1 0

N2 0 3 0

N3 1 1 1

N4 1 1 2

.

The result of application of the aggregation operations over IM IM(N1, . . . , Ns) will be,
respectively:

ρmax(IM(N1, . . . , Ns), k0) =
p1 p2 . . . pk

k0 max
1≤i≤s

αi,1 max
1≤i≤s

αi,2 . . . max
1≤i≤m

αi,k
,

ρmin(IM(N1, . . . , Ns), k0) =
p1 p2 . . . pk

k0 min
1≤i≤s

αi,1 min
1≤i≤s

αi,2 . . . min
1≤i≤m

αi,k
,

ρsum(IM(N1, . . . , Ns), k0) =
p1 p2 . . . pk

k0
∑

1≤i≤s
αi,1

∑
1≤i≤s

αi,2 . . .
∑

1≤i≤m
αi,k

,

ρave(IM(N1, . . . , Ns), k0) =
p1 p2 . . . pk

k0
1
s

∑
1≤i≤s

αi,1
1
s

∑
1≤i≤s

αi,2 . . . 1
s

∑
1≤i≤m

αi,k
.

Now, we see immediately that:
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• IM ρmax(IM(N1, . . . , Ns), k0) represents the least common multiple of the numbers
N1, . . . , Ns;

• IM ρmin(IM(N1, . . . , Ns), k0) represents the greatest common divisor of the numbers
N1, . . . , Ns;

• IM ρsum(IM(N1, . . . , Ns), k0) represents the product of the numbers N1, . . . , Ns;

• IM ρave(IM(N1, . . . , Ns), k0) represents the geometric average of the numbersN1, . . . , Ns.

It is worth mentioning that the fourth case is not discussed in [5].
For the above example, these formulas obtain the following forms:

ρmax(IM(N1, . . . , N4), k0) =
p1 p2 p3

k0 2 3 2
,

ρmin(IM(N1, . . . , N4), k0) =
p1 p2 p3

k0 0 1 0
,

ρsum(IM(N1, . . . , N4), k0) =
p1 p2 p3

k0 4 6 3
,

ρave(IM(N1, . . . , N4), k0) =
p1 p2 p3

k0 1 3
2

3
4

.

The fourth case gives the idea for introducing of the following new aggregation operation:

ρgeo(IM(N1, . . . , Ns), k0) =

p1 p2 . . . pk

k0 s

√ ∏
1≤i≤s

αi,1 s

√ ∏
1≤i≤s

αi,2 . . . s

√ ∏
1≤i≤m

αi,k
.

For the above example we obtain:

ρgeo(IM(N1, . . . , N4), k0) =
p1 p2 p3

k0 0 4
√
3 0

,

but we must mention immediately that the elements of the newly constructed IM do not corre-
spond to geometric average of N1, . . . , Ns. They do not correspond to any known arithmetic
operation.

Second, we introduce two new IM-operations in which the indices, when they are real (natu-
ral) numbers, participate with additional role.

Let us have the IM

A = [K,L, {aki,lj}] ≡

l1 l2 . . . ln

k1 ak1,l1 ak1,l2 . . . ak1,ln
k2 ak2,l1 ak2,l2 . . . ak2,ln
...

...
... . . . ...

km akm,l1 akm,l2 . . . akm,ln

,
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where K = {k1, k2, . . . , km} ⊂ R, and L = {l1, l2, . . . , ln} ⊂ R, and for 1 ≤ i ≤ m, and for
1 ≤ j ≤ n : aki,lj ∈ R.

Now, we define

↓◦ A =

l1 l2 . . . ln

k1 ak1,l1 ◦ l1 ak1,l2 ◦ l2 . . . ak1,ln ◦ ln
k2 ak2,l1 ◦ l1 ak2,l2 ◦ l2 . . . ak2,ln ◦ ln
...

...
... . . . ...

km akm,l1 ◦ l1 akm,l2 ◦ l2 . . . akm,ln ◦ ln

and

→◦ A =

l1 l2 . . . ln

k1 ak1,l1 ◦ k1 ak1,l2 ◦ k1 . . . ak1,ln ◦ k1
k2 ak2,l1 ◦ k2 ak2,l2 ◦ k2 . . . ak2,ln ◦ k2
...

...
... . . . ...

km akm,l1 ◦ km akm,l2 ◦ km . . . akm,ln ◦ km

.

For example, for the IM IM(N1, . . . , Ns) we obtain

↓× IM(N1, . . . , Ns) =

p1 p2 . . . pk

N1 α1,1p1 α1,2p2 . . . α1,kpk
...

...
... . . . ...

Ns αs,1p1 αs,2p2 . . . αs,kpk

.

In [5], the following average operation is defined over IM A:

σsum(A, l0) =

l0

k1
n∑
j=1

ak1,lj

...
...

km
n∑
j=1

akm,lj

,

Now, for our example we obtain

σsum(↓× IM(N1, . . . , Ns), l0) =

l0

N1

k∑
j=1

a1,jpj

...
...

Ns

k∑
j=1

as,jpj

.

In [3] function ζ is defined over the natural number m from Section 1 as follows:

ζ(m) =
k∑
i=1

αipi.
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Now, for our example we obtain

σsum(↓× IM(N1, . . . , Ns), l0) =

l0

N1 ζ(N1)
...

...
Ns ζ(Ns)

.

We finish with another example, related to Fibonacci sequence. In [6] the following extension
of the Fibonacci sequence, call 2-Fibonacci sequence, was introduced as follows:

α0 = a, β0 = b, α1 = c, β1 = d

αn+2 = βn+1 + βn, n ≥ 0

βn+2 = αn+1 + αn, n ≥ 0

The first ten terms of this sequence are:

n αn βn

0 a b

1 c d

2 b+ d a+ c

3 a+ c+ d b+ c+ d

4 a+ b+ 2.c+ d a+ b+ c+ 2.d

5 a+ 2.b+ 2.c+ 3.d 2.a+ b+ 3.c+ 2.d

6 3.a+ 2.b+ 4.c+ 4.d 2.a+ 3.b+ 4.c+ 4.d

7 4.a+ 4.b+ 7.c+ 6.d 4.a+ 4.b+ 6.c+ 7.d

8 6.a+ 7.b+ 10.c+ 11.d 7.a+ 6.b+ 11.c+ 10.d

9 11.a+ 10.b+ 17.c+ 17.d 10.a+ 11.b+ 17.c+ 17.d

Now, we can construct the following two IM, corresponding, respectively, to the members of
sequences {αn}n≥0 and {βn}n≥0, e.g., for n ≤ 9:

IM({αn}0≤n≤9) =

a b c d

α0 1 0 0 0

α1 0 0 1 0

α2 0 1 0 1

α3 1 0 1 1

α4 1 1 2 1

α5 1 2 2 3

α6 3 2 4 4

α7 4 4 7 6

α8 6 7 10 11

α9 11 10 17 17
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IM({βn}0≤n≤9) =

a b c d

β0 0 1 0 0

β1 0 0 0 1

β2 1 0 1 0

β3 0 1 1 1

β4 1 1 1 2

β5 2 1 3 2

β6 2 3 4 4

β7 4 4 6 7

β8 7 6 11 10

β9 10 11 17 17

We see again that

σsum(↓× IM({αn}0≤n≤9, l0) =

l0

α0 a

α1 c

α2 b+ d

α3 b+ c+ d

α4 a+ b+ c+ 2.d

α5 a+ 2.b+ 2.c+ 3.d

α6 3.a+ 2.b+ 4.c+ 4.d

α7 4.a+ 4.b+ 7.c+ 6.d

α8 6.a+ 7.b+ 10.c+ 11.d

α9 11.a+ 10.b+ 17.c+ 17.d

and

σsum(↓× IM({βn}0≤n≤9, l0) =

l0

α0 b

α1 d

α2 a+ c

α3 a+ c+ d

α4 a+ b+ 2.c+ d

α5 2.a+ b+ 3.c+ 2.d

α6 2.a+ 3.b+ 4.c+ 4.d

α7 4.a+ 4.b+ 6.c+ 7.d

α8 7.a+ 6.b+ 11.c+ 10.d

α9 10.a+ 11.b+ 17.c+ 17.d

.

4 Conclusion

The apparatus of index matrices has already found some applications in the area of number theory
(e.g., in [5, 8] and others), but it is clear that these publications are only the first steps in this
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direction of research. On one side, the new operations can find applications in a lot of other areas,
and on the other side, the above research can be perceived as the first step in applying the new
operators to elements of different sequences, which is an object of further research in the future.
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