Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 22, 2016, Number 2, Pages 17–22
Full paper (PDF, 172 Kb)
Details
Authors and affiliations
Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria
Intelligent Systems Laboratory
Prof. Asen Zlatarov University
Prof. Yakimov Blvd., Bourgas–8000, Bulgaria
Abstract
Some new properties of the arithmetic function called “Restrictive factor” are formulated and studied.
Keywords
- Arithmetic function
- Restrictive factor
AMS Classification
- 11A25
References
- Atanassov, K. (2002) Restrictive factor: definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8(4), 117–119.
- Panaitopol, L. (2004) Properties of the Atanassov functions. Advanced Studies on Contemporary Mathematics, 8(1), 55–59.
- Sándor, J., & Mitrinovic, D. S. (1995) Handbook of number theory, Kluwer Acad. Publ.
- Spiegelhalter, P., & Zaharescu, A. (2011) Strong and weak Atanassov pairs, Proceedings of the Jangjeon Mathematical Society,14(3), 355–361.
Related papers
Atanassov, K. & Sándor, J. (2019). Extension factor: definition, properties and problems. Part 1. Notes on Number Theory and Discrete Mathematics, 25(3), 36-43, DOI: 10.7546/nntdm.2019.25.3.36-43.
Cite this paper
Atanassov, K. T. (2016). On function “Restrictive factor”. Notes on Number Theory and Discrete Mathematics, 22(2), 17-22.