B. Chaluvaraju, Medha Itagi Huilgol, Manjunath N., and Syed Asif Ulla S.
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 21, 2015, Number 2, Pages 70–79
Full paper (PDF, 278 Kb)
Details
Authors and affiliations
B. Chaluvaraju
Department of Mathematics, Bangalore University
Central College Campus, Bangalore – 560 001, India
Medha Itagi Huilgol
Department of Mathematics, Bangalore University
Central College Campus, Bangalore – 560 001, India
Manjunath N.
P. E. S. Institute of Technology, Department of Mathematics
Bangalore, India
Syed Asif Ulla S.
Department of Mathematics, Bangalore University
Central College Campus, Bangalore – 560 001, India
Abstract
Let k be a positive integer. A graph G = (V, E) is said to be Πk-connected if for any given subset S of V(G) with |S| = k, the subgraph induced by S is connected. In this paper, we consider Πk–connected graphs under different graph valued functions. Πk–connectivity of Cartesian product, normal product, join and corona of two graphs have been obtained in this paper.
Keywords
- Subgraph of a graph
- Vertex induced connected subgraph
- Degree of a vertex
AMS Classification
- 05C40
References
- Frucht, R., & Harary, F. (1970) On the corona of two graphs, Aequationes Math. 4, 322–324.
- Sampathkumar, E. (1984) Connectivity of a graph-A Generalization, J. Combinatorics, Information and System Sciences, 9(2), 71–78.
- Harary, F. (1969) Graph Theory, Addison–Wesley.
- Harary, F. (1959) On the group of the decomposition of two graphs, Duke Math. J. 26,29–34.
- Sabidussi, G. (1961) Graph derivatives, Math. Z., 76, 385–401.
- Bresar, B. (2004) On subgraphs of Cartesian product graphs and S-primeness, Discrete Math. 282, 43–52.
- Fitina, L., Lenard, C., & Mills, T. (2010b) A note on connectivity of the Cartesian product of graphs, Australas Journal. Combin., 48, 281–284.
- Harary, F., & Trauth, Jr., C. A. (1966) Connectedness of Products of two directed graphs, SIAM J. Appl. Math., 14, 250–254.
- Hong, S., Kwak, J.H., & Lee, J. (1999) Bi-partite graph bundles with connected fibres, Bull. Aqstral. Math. 59, 153–161.
- Jaradad, M. M. M. (2008) Minimal cycle bases of a lexicographic product of graphs. Discuss. Math. Graph Theory, 28, 229–247.
- Tisan Ski, T. & Tuckker, T. W. (2002) Growth in products of graphs, Australas. J. Combin.,26, 155–169.
- Spacapan, S. (2008) Connectivity of Cartesian products of graphs, Appl. Math. Lett., 21,682–685.
Related papers
Cite this paper
B. Chaluvaraju, Medha Itagi Huilgol, Manjunath N., & Syed Asif Ulla S. (2015). On Πk–connectivity of some product graphs. Notes on Number Theory and Discrete Mathematics, 21(2), 70-79.