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Abstract: Let k be a positive integer. A graph G = (V,E) is said to be Πk-connected if for
any given subset S of V (G) with |S| = k, the subgraph induced by S is connected. In this
paper, we consider Πk-connected graphs under different graph valued functions. Πk-connectivity
of Cartesian product, normal product, join and corona of two graphs have been obtained in this
paper.
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1 Introduction

Unless mentioned otherwise, for terminology and notation the reader may refer to Harary [3],
new ones will be introduced as and when found necessary.

In this article, we consider finite, undirected, simple and connected graphs G = (V,E) with
vertex set V and edge set E. As such p =| V | and q =| E | denote the number of vertices and
edges of a graph G, respectively. In general, we use 〈X〉 to denote the sub graph induced by the
set of vertices X ⊆ V . N(v) and N [v] denote the open and closed neighborhoods of a vertex v,
respectively. A non-trivial graph G is called connected if any two of its vertices are linked by a
path in G.

A Πk-connected graph G is said to be vertex minimal Πk-connected if G is not Πk−1-connected.
A vertex minimal Πk-connected graph G is said to be partially vertex–edge minimal Πk-connected
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if G− e is not Πk-connected for atmost |E(G)| − 1 edges of G. A vertex minimal Πk-connected
graph G is said to be totally vertex–edge minimal Πk-connected if G− e is not Πk-connected for
every e ∈ E(G).

The Cartesian product of two graphs G and H , denoted G2H , is a graph with vertex set
V (G2H) = V (G)× V (H), that is, the set {(g, h)/g ∈ G, h ∈ H}.

The edge set of G2H consists of all pairs [(g1, h1), (g2, h2)] of vertices with [g1, g2] ∈ E(G)

and h1 = h2, or g1 = g2 and [h1, h2] ∈ E(H).
The normal product of two graphs G and H , denoted G

⊕
H , is a graph with vertex set

V (G
⊕

H) = V (G) × V (H), that is, the set {(g, h)/g ∈ G, h ∈ H}, and an edge
[(g1, h1), (g2, h2)] exists whenever any of the following conditions hold good:
(i) [g1, g2] ∈ E(G) and h1 = h2,
(ii) g1 = g2 and [h1, h2] ∈ E(H) ,
(iii) [g1, g2] ∈ E(G) and [h1, h2] ∈ E(H). Given a digraph G0 = (V0, E0) and a family of
digraphs {Gv = (Vv, Ev)}v∈V0 indexed by V0, the generalized lexicographic product, denoted by
G0[{Gv}v∈V0 ] is defined as the digraph with vertex set V = {(u, v)/ v ∈ V0 and w ∈ Vv} and
arc set E = {((v, w), (v

′
, w

′
))/ (v, v

′
) ∈ E0 or (v = v

′
) and (w,w

′
) ∈ Ev}.

Join of two graphs is denoted by G1 + G2 and consists of G1 ∪G2 and all edges joining V1 with
V2. The corona G1 ◦ G2was defined by Frucht and Harary [1] as the graph G obtained by taking
one copy of G1 of order p1 and p1 copies of G2, and then joining the i′th node of G1 to every
node in the i′th copy of G2.

2 Preliminary results

Theorem 2.1. A connected graph G is vertex minimal Πp-connected if and only if it has at least
one cut vertex.

3 Main results

Proposition 3.1. Any graph G is Πk-connected if and only if every subgraph of G having order
at least k is Πk-connected.

Proof. Let G be any Πk-connected graph. On contrary, suppose there exists a disconnected vertex
induced subgraph H of order at least k. Form a k - vertex subset S of V (H) by taking at least
one vertex from at least two components of H . The subgraph induced by S is disconnected, a
contradiction.

Conversely, suppose every subgraph of order at least k is Πk-connected. Hence, every sub-
graph of order k is connected. Therefore, G is Πk-connected.

Theorem 3.1. Prism of a complete graph Kp is totally vertex–edge minimal Πp+1-connected.

Proof. Let G be the prism of a complete graph Kp. Let G1 and G2 be the copies of Kp in the
prism. Let T be an arbitrary set of p + 1 vertices, hence T contains at least two adjacent vertices
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u, v such that u ∈ V (G1) and v ∈ V (G2), where 〈V (G1)〉 and 〈V (G2)〉 are complete graphs.
Hence, the subgraph induced by T is connected. Now we prove G is not Πp-connected and G− e

is not Πp+1-connected. Now we shall prove G is not Πp-connected. Let M be the set of vertices
consisting of p − 1 vertices from V (G1) and a vertex from V (G2) non-adjacent with any of the
p − 1 vertices. The subgraph induced by M is disconnected and hence G is not Πp-connected.
Now we prove G− e is not Πp+1-connected. Here two cases arise:

• Case(1): e ∈ G1 or e ∈ G2, and

• Case(2): e is an edge between G1 and G2.

Case(1): Let S ⊂ V (G2) consist of p − 1 vertices. Let u, v ∈ V (G1) be such that u is not
adjacent to any of the vertices of S and v ∈ V (G1) be any vertex. In G− e(= uv), the subgraph
induced by 〈S ∪ {u, v}〉 is disconnected.

Case(2): Let e = uf(u) be any edge between G1 and G2. In G − e(= uf(u)), the subgraph
induced by V (G2)∪u is not connected and hence G−e(= uf(u)) is not Πp+1-connected. Hence,
G is totally vertex–edge minimal Πp+1-connected.

Remark 1. Every totally vertex–edge minimal graph is partially vertex–edge minimal but every
partially vertex–edge minimal need not be totally vertex–edge minimal.

Theorem 3.2. Prism of partially vertex–edge minimal Π3-connected graph of order p ≥ 3 is
partially vertex–edge minimal Πp+2-connected.

Proof. Let G be a partially vertex–edge minimal Π3-connected graph of order p and H be the
prism of G. let G1 and G2 be two copies of G in the prism of G. Let the matching be the union of
edges (u, f(u)) for all u in G1 and f(u) in G2, where f : V (G1) −→ V (G2) is a bijection from
V (G1) to V (G2) such that f(u) is the mirror image of u. Let T ⊂ V (H) be any subset having
p + 2 vertices. It is clear that T contains at least four vertices u, v, f(u) and f(v) such that u is
adjacent to f(u) and v is adjacent to f(v). Here two cases arise:

• Case(1): u is adjacent to v, and

• Case(2): u is not adjacent to v.

Case(1): As G1 is Π3-connected, every vertex in T ∩ V (G1) is adjacent to at least one of
the two vertices u, v. Similarly, every vertex in T ∩ V (G2) is adjacent to at least one of the two
vertices f(u), f(v). Hence, the subgraph induced by the set T is connected.

Case(2): Every vertex in T ∩ V (G1) is a common neighbor of u and v and every vertex in
T ∩ V (G2) is a common neighbor of f(u) and f(v). Therefore the subgraph induced by the set
T is connected. Hence, the prism of G is Πp+2 connected. H is not Πp+1 connected, as the graph
induced by {V (G1) − u} ∪ {f(u), f(v)} is disconnected, where f(u) is not adjacent to f(v).
Since G1 is partially vertex–edge minimal Π3-connected, there exists an edge e ∈ E(G1) such
that G1− e is not Π3-connected, i.e., there exists three vertices u, v and w in V (G1− e) such that
the subgraph induced by u, v and w is disconnected. Let u be a vertex not adjacent to v and w.
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Hence, the subgraph of H − e induced by {V (G2)− f(u)} ∪ {u, v, w} is disconnected. Hence,
H − e is not Πp+2-connected.

Case (a): Suppose e ∈ V (G1). Since G1 is partially vertex–edge minimal Π3-connected
graph, G1−e is not Π3-connected, i.e., there exist three vertices u, v, and w whose induced graph
is not connected. The subgraph induced by subset {V (G2) − f(u)} ∪ {u, v, w} of V (H − e)

is not connected. Hence, H − e is not Πp+2-connected. Similarly we can prove H − e is not
Πp+2-connected when e ∈ V (G2).

Case (b): Suppose e = (u, f(u)) is contained in the matching. Since G2 is partially vertex–
edge minimal Π3-connected graph, there exist a vertex f(v) non-adjacent to f(u)). The subgraph
of H−e induced by V (G1)∪{f(u)), f(v)} is not connected. Hence, H−e is not Πp+2-connected.

Also H is not Πp+1 connected, as the subgraph induced by {V (G1) − u} ∪ {f(u), f(v)},
where f(u) is not adjacent to f(v), is disconnected.

Example:

Figure 1: Prism of partially vertex–edge minimal

Π3-connected graph having even order

Theorem 3.3. Prism of totally vertex–edge minimal Π3-connected graph having even order is
totally vertex–edge minimal Πp+2 connected.

Proof. Let G be the prism of totally vertex–edge minimal Π3-connected graph having even order
p. G is:

(i) Πp+2 connected but not Πp+1 connected;

(ii) G− eG1 , G− eG2 and G− eG1,G2 are not Πp+2.

Hence, the prism is totally vertex–edge minimal Πp+2 connected.

Note: In every totally vertex–edge minimal Π3-connected graph having odd order p, there exist
exactly one vertex having degree p− 1.

Theorem 3.4. Prism of totally vertex–edge minimal Π3-connected graph having odd order p is
partially vertex–edge minimal Πp+2 connected.

Proof. Let H be a totally vertex–edge minimal Π3-connected graph having odd order p and v be
a vertex in H having degree p− 1. Let G be the prism of H . G is:
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(i) Πp+2 connected but not Πp+1 connected;

(ii) G−eG1 is not Πp+2 connected, e is any edge in G1 not incident with a vertex v, but G−eG1

is still Πp+2 connected, if e is incident with v.

Hence, G is partially vertex–edge minimal Πp+2 connected.

The following construction gives the class of non-regular Πk-connected graphs, where k is a
function of p.

Theorem 3.5. There exist a non-regular Π2n+3-connected graph on 2(2n) + 1, n ≥ 3 vertices.

Proof. Let G be a totally vertex–edge minimal Π3-connected graph of order 2n and G
′ be a prism

of G. Let G1 be the graph obtained by adding a vertex v and making it adjacent to every vertex
of one of the copies in the prism. The resulting graph G1 is non-regular since deg(v) = 2n and
degree of other vertices is 2n − 1, as v is adjacent to all the vertices in the second copy of the
prism. G1 − v is isomorphic to the graph obtained in theorem(2.3), which is totally vertex–edge
minimal Πp+2 connected. Let T be any set of 2n + 3 vertices in G1. Here two cases arise:

• Case (i): v belongs to T , and

• Case (ii): v does not belong to T .

Case (i): Suppose v belongs to T . The subgraph induced by T − v is connected and contains
at least four vertices u,w from the first copy and f(u), f(w) from the second copy such that u is
adjacent to f(u) and w is adjacent to f(w) and hence 〈T 〉 is connected as v is adjacent to all the
vertices in the second copy.

Case (ii): Suppose v does not belong to T . Clearly the subgraph 〈T 〉 is connected as every
Πk graph is Πk+1 also. Hence, G1 is Π2n+3-connected graph.

Example:

Figure 2: Prism of Π3-connected graph having even order

Theorem 3.6. Cartesian product Kp1 × Kp2 of two complete graphs Kp1 and Kp2 is totally
vertex–edge minimal Πk-connected, where k = p1p2 − p1 − p2 + 3.
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Proof. Let V1 be the set of vertices in Kp1 and V2 be the set of vertices in Kp2 . Let u ∈ V1

and v ∈ V2. The subgraph induced by the vertices {V1 − u} × {V2 − v} ∪ (u, v) is a discon-
nected graph. If we include one more vertex, say (u,w) in the above set, the subgraph becomes
connected. Hence, the Cartesian product Kp1 × Kp2 is vertex minimal Πk-connected, where
k = p1p2− p1− p2 + 3 and if we remove e = (u,w), the above subgraph becomes disconnected.
Since the vertices and the edge are arbitrarily chosen, the Cartesian product Kp1 ×Kp2 is totally
vertex–edge minimal Πk-connected, where k = p1p2 − p1 − p2 + 3. Hence, the proof.

Remark 2. In the normal product Kp

⊕
G of a complete graph and any graph G, the subgraph

induced by the set of vertices A ∪ B, where A = {(u, x)/ u ∈ V (Kp)} and B = {(u, y)/ u ∈
V (Kp)} is complete bipartite whenever x is adjacent to y in G.

Remark 3. Cartesian product of two connected graphs is connected if and only if both are con-
nected.

Theorem 3.7. If the graph G is vertex minimal Πk-connected, k ≥ 3 then the normal product
Kp

⊕
G is Πp(k−1)+1-connected.

Proof. Let a graph G be Πk-connected. Since G is vertex minimal Πk-connected, there exist
a set (S) of k − 1 vertices whose induced subgraph is disconnected and hence the subgraph
of Kp

⊕
G induced by 〈V (Kp) × S〉 is disconnected. Any vertex w not in S makes the sub-

graph induced by 〈S ∪ w〉 connected and hence from the above remark, the subgraph induced by
〈V (Kp) × S ∪ (u,w)〉 is connected, where u is any vertex in Kp. Hence, the normal product
Kp

⊕
G is Πp(k−1)+1-connected.

Theorem 3.8. Let G1(p1, q1) and G2(p2, q2) are Πm and Πn-connected graphs respectively, then
G1

⊕
G2 is:

(i) Πp1(n−1)+1-connected, if p1(n− 1) ≥ p2(m− 1);

(ii) Πp2(m−1)+1-connected, if p2(m− 1) > p1(n− 1).

Proof. Let G1(p1, q1) and G2(p2, q2) are Πm and Πn-connected graphs respectively and
p1(n − 1) > p2(m − 1). Let T = {(x1, y1), (x2, y2), (x3, y3), . . .} be any set of p1(n − 1) + 1

vertices in G1

⊕
G2. Since p1(n− 1) > p2(m− 1), there exists at least m distinct x′s

i and at least
n distinct y′s

i in T . Suppose the subgraph induced by T is disconnected, then the subgraphs in-
duced by x1, x2, . . . and y1, y2, . . . are disconnected in G1(p1, q1) and G2(p2, q2), a contradiction.
Hence, the subgraph induced by T is connected.

Similarly we can prove the second case.
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Figure 3: Normal product of two graphs

Remark 4. Let the graphs G1(p, q1) and G2(p, q2) are Πk-connected with |V (G1)| < |V (G2)|
then G1

⊕
G2 is Π|V (G2)|(k−1)+1-connected.

Theorem 3.9. Let the graphs G1 and G2 are Πk1 and Πk2-connected with |V (G1)| ≤ |V (G2)|
and k1 > k2 then G1

⊕
G2 is Π|V (G2)|(k1−1)+1-connected.

Proof. Let the graphs G1 and G2 are Πk1 and Πk2-connected with |V (G1)| ≤ |V (G2)| and
k1 > k2. The normal product G1

⊕
G2 is not Π|V (G2)|(k1−1)-connected since G1 is Πk1-connected,

there exist at least one subset S containing k1− 1 such that the subgraph 〈S〉 induced by S is dis-
connected and hence the subgraph 〈S×v(G2)〉 induced by S×v(G2) is disconnected, implies the
normal product G1

⊕
G2 is not Π|V (G2)|(k1−1)-connected and 〈S×V (G2) ∪ (u, v)〉 is connected,

where S and (u, v) are arbitrarily chosen. Hence, G1

⊕
G2 is Π|V (G2)|(k1−1)+1-connected.

Theorem 3.10. Let G1(p1, q1) and G2(p2, q2) be Πk1 and Πk2-connected graphs respectively, then
the join of G1 and G2 is Πk3-connected, where k3 = max{k1, k2}.

Proof. Let G1(p1, q1) and G2(p2, q2) be Πk1 and Πk2-connected graphs respectively. The join is
not Πk3−1-connected because when all the k3− 1 vertices belongs to V (G2), where k3 = k2, then
subgraph induced by these k3− 1 vertices is disconnected. Hence, the join is Πk3-connected.

Theorem 3.11. Let G0 = (V0, E0) be a graph and {Gv = (Vv, Ev)}v∈V0 indexed by V0 be a family
of isomorphic graphs then the generalized lexicographic product G0[{Gv}v∈V0 ] is Πt-connected,
where t = (k − 1)|Vv|+ 1 if and only if G0 is Πk-connected, k ≥ 2.

Proof. Let G0 be a Πk-connected graph. The lexicographic product G0[{Gv}v∈V0 ] is not
Π(k−1)|Vv |-connected as the graph G0 is not Πk−1-connected, there exist at least one set of k − 1

vertices in V (G0) whose induced subgraph is disconnected in G0, replacing each of these k − 1

vertices by Gv, we get a disconnected (k − 1)|Vv| vertex induced subgraph of the generalized
lexicographic product G0[{Gv}v∈V0 ]. The set of (k − 1)|Vv|+ 1 vertices are to be chosen from at
least k number of G′s

v and hence the subgraph induced by any (k−1)|Vv|+1 vertices is connected
as G0 is Πk-connected graph.
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Conversely, let G0[{Gv}v∈V0 ] be Πt-connected. Suppose on contradiction that G0 is not Πk-
connected, then there exist at least one set, say S whose cardinality is greater than k. The sub-
graph, say G

′ induced after replacing each vertex of S by the set of vertices Vv, is disconnected,
i.e., there exists a set of k vertices on which the subgraph induced is not connected and hence
by replacing each vertex of S by V (Gv), we get a disconnected subgraph on (k)|Vv|, induced in
G0[{Gv}v∈V0 ], a contradiction to our assumption G0[{Gv}v∈V0 ] is Πt-connected. Hence, G0 is
Πk-connected.

Theorem 3.12. Tensor product of two complete graphs Kp1 , p1 ≥ 3 and Kp
′
2
, p

′
2 ≥ 2 is

Πk-connected, where k = p1 + p
′
2.

Proof. We first prove the tensor product of two complete graphs Kp1 and Kp2 is not Πk−1-
connected.

Suppose all the k − 1 vertices lie on the column and row. Then the vertex lying at the inter-
section of these column and row is not adjacent to any of the vertices lying in these two row and
column and hence the subgraph induced by these k − 1 vertices is disconnected. Now we prove
k is a minimum such that the tensor product is Πk connected.

Let S be any set of k vertices in the tensor product. Take any vertex v from S and the
corresponding row and column containing the vertex v. There exists at least one vertex u not
lying on these column and row and hence adjacent to v. Now here we take two cases:

• Case (1) : There exists only one vertex u not lying on these row and column.

• Case (2) : There exists at least two vertices not lying on these row and column.

Case (1): Since the number of vertices in S is p1 + p′2, there exists at least one vertex x not
lying on the row and column containing u. Again the following two sub-cases arise:

(i) x lies on the row or column containing v then x will be adjacent to u and x is also adjacent
to all the vertices of S lying on column or row containing v. Hence, the subgraph in this
case induced by k vertices is connected.

(ii) x not lying on row or column containing v. Then x will be adjacent to u, also x will be
adjacent to at least one vertex in row or column containing v. Hence, in this case also the
graph induced by k vertices is connected.

Case (2): There exist at least two vertices not lying on these row and column. Suppose these
vertices lie on same row or column then each will be adjacent to at least one vertex lying in column
or row as the case may be and hence the subgraph induced by these k vertices is connected. Now
suppose these vertices lie on different rows or different columns then each vertex will be adjacent
to the other vertices lying in other rows or columns. Hence, in this case also the subgraph induced
by k vertices is connected.
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Figure 4: R and C containing k − 1 vertices in the tensor product

At least two vertices
lying in the same row

At least two vertices
lying in the same column

Vertices lying in different
columns and rows

Figure 5: Graphs for different cases

Theorem 3.13. For any two connected graphs G1(p1, q1) and G2(p2, q2), G1 ◦G2 is vertex mini-
mal Πp1p2-connected.

Proof. Let G1(p1, q1) and G2(p2, q2) be any two graphs. Now we prove the G1◦G2 is not Πp1p2−1.
The subgraph induced by the vertices {u1, u2, . . . , up1−1} ∪ {V (Gu1), V (Gu2), . . . , V (Gup1

)} is
a disconnected subgraph of G1 ◦G2. Hence, G1 ◦G2 is vertex minimal Πp1p2-connected.
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