I. Kátai and B. M. Phong
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 143–154
DOI: 10.7546/nntdm.2021.27.3.143-154
Full paper (PDF, 177 Kb)
Details
Authors and affiliations
I. Kátai
Department of Computer Algebra, University of Eötvös Loránd
1117 Budapest, Hungary
B. M. Phong
Department of Computer Algebra, University of Eötvös Loránd
1117 Budapest, Hungary
Abstract
Let and , where , denote the set of nonnegative integers and complex numbers, respectively. We give all functions which satisfy the relation
for every . We also give all arithmetical functions which satisfy the relation
for every , where denotes the set of all positive integers.
Keywords
- Arithmetical function
- Function equation
- Sums of squares
- Lagrange’s Four-Square Theorem
2020 Mathematics Subject Classification
- 11K65
- 11N37
- 11N64
References
- Bašić, B. (2014). Characterization of arithmetic functions that preserve the sum-of-squares operation. Acta Mathematica Sinica, 4, 689–695.
- Chung, P. V. (1996). Multiplicative functions satisfying the equation f(m2+n2) = f(m2)+f(n2). Mathematica Slovaca, 46, 165–171.
- Kátai, I., & Phong, B. M. M. (2021). A characterization of functions using Lagrange’s Four-Square Theorem. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 52. (accepted)
- Kátai, I., & Phong, B. M. M. (2021). Arithmetical functions commutable with sums of squares II. Mathematica Pannonica. (submitted)
- Khanh, B. M. M. (2017). On conjecture concerning the functional equation. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 46, 123–135.
- Khanh, B. M. M. (2019). A note on a result of B. Bojan. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae. Sectio Computatorica, 49, 285–297.
- Khanh, B. M. M. (2021). On the equation f(n2 + Dm2 + k) = f(n)2 + Df(m)2 + k, Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 52. (accepted)
- Park, P.-S. (2018). Multiplicative functions commutable with sums of squares. International Journal of Number Theory, 2, 469–478.
- Park, P.-S. (2018). On k-additive uniqueness of the set of squares for multiplicative functions. Aequationes Mathematicae, 92, 487–495.
Related papers
Cite this paper
Kátai, I., & Phong, B. M. (2021). Arithmetical functions commutable with sums of squares. Notes on Number Theory and Discrete Mathematics, 27(3), 143-154, DOI: 10.7546/nntdm.2021.27.3.143-154.