Heidi Goodson

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 2, Pages 213—221

DOI: 10.7546/nntdm.2020.26.2.213-221

**Download full paper: PDF, 156 Kb**

## Details

### Authors and affiliations

Heidi Goodson

*Department of Mathematics, Brooklyn College
2900 Bedford Avenue, Brooklyn, NY 11210 USA
*

### Abstract

The classic way to write down Pascal’s triangle leads to entries in alternating rows being vertically aligned. In this paper, we prove a linear relation on vertically aligned entries in Pascal’s triangle. Furthermore, we give an application of this relation to morphisms between hyperelliptic curves.

### Keywords

- Pascal’s triangle
- Binomial coefficients
- Hyperelliptic curves

### 2010 Mathematics Subject Classification

- 05A10
- 11G30

### References

- Emory, M., Goodson, H., & Peyrot, A. (2018). Towards the Sato–Tate Groups of Trinomial Hyperelliptic Curves. ArXiv e-prints, page arXiv:1812.00242, Dec. 2018.
- Koshy, T. (2014). Pell and Pell–Lucas numbers with applications. Springer, New York.
- Miranda, R. (1995). Algebraic curves and Riemann surfaces, Volume 5 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI.
- Silverman, J. H. (2009). The arithmetic of elliptic curves, Volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, Second edition.
- Sloane, N. J. A. (2018). Sequence A034807. The On-Line Encyclopedia of Integer Sequences. Available online at: https://oeis.org/A034807.
- Stanley, R.P.(1999). Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, Volume 62. Cambridge University Press, Cambridge.
- Stanley, R.P.(2012). Enumerative Combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, Volume 49. Cambridge University Press, Cambridge, Second edition.

## Related papers

## Cite this paper

Goodson, H. (2020). An identity for vertically aligned entries in Pascal’s triangle. Notes on Number Theory and Discrete Mathematics, 26 (2), 213-221, doi: 10.7546/nntdm.2020.26.2.213-221.