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Abstract: The classic way to write down Pascal’s triangle leads to entries in alternating rows
being vertically aligned. In this paper, we prove a linear relation on vertically aligned entries
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hyperelliptic curves.
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1 Introduction

We consider entries in row n of Pascal’s triangle, where n is any nonnegative integer. It is well
known that the i-th entry in this row can be computed as the binomial coefficient

(
n
i

)
, where

0 ≤ i ≤ n.
The entries in alternating rows of Pascal’s triangle are vertically aligned. For example, in

Figure 1 below we have circled the entries that are vertically aligned with and above the third
entry in Row 11.

In Figure 2 we have circled the entries that are vertically aligned with and above the sixth
entry in Row 12. Note that these values are the central binomial coefficients

(
2n
n

)
and are closely

related to the ubiquitous Catalan numbers Cn = 1
n+1

(
2n
n

)
(see, for example, [6, 7]).
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 136 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

Figure 1. Entries vertically aligned with the third entry in Row 11.
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1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 136 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

Figure 2. Entries vertically aligned with the sixth entry in Row 12.

We can describe these entries in the following way. Starting with entry
(
n
r

)
in row n, the

elements that are vertically aligned and above are all of the form(
n− 2k

r − k

)
,

where 1 ≤ k ≤ r and k ≤ bn
2
c. For example, the elements that are vertically aligned with and

above
(
11
3

)
are
(
9
2

)
,
(
7
1

)
,
(
5
0

)
.
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1.1 Interesting observations

Observe that (
11

3

)
− 11

(
9

2

)
+ 44

(
7

1

)
− 77

(
5

0

)
= 0.

When n = 12 and i = 6, we have(
12

6

)
− 12

(
10

5

)
+ 54

(
8

4

)
− 112

(
6

3

)
+ 105

(
4

2

)
− 36

(
2

1

)
+ 2

(
0

0

)
= 0.

The following theorem generalizes these two observations.

2 General formula

Theorem 2.1. Let n be a nonnegative integer and 0 < r < n. Then

r∑
k=0

(−1)k n

n− k

(
n− k
k

)(
n− 2k

r − k

)
= 0.

Remark 1. If r > bn/2c, as is the case when our elements are to right of the vertical line through
the middle of Pascal’s Triangle, there will be some values of k for which n − 2k < r − k. But
recall that

(
m
i

)
= 0 whenever 0 ≤ m < i (see, for example, [2, Section 1.9]). Thus, terms for

which 0 ≤ n− 2k < r − k do not contribute to the sum in Theorem 2.1.
If n − 2k < 0, then

(
n−2k
r−k

)
is no longer 0. However in this case, we have n − k < k and,

therefore,
(
n−k
k

)
= 0 instead. Hence, all terms for which r > bn/2c do not contribute to the sum

in Theorem 2.1.

Proof of Theorem 2.1. The following proof starts with an identity attributed to E.H. Lockwood.
For any n ≥ 1,

xn + yn =

bn/2c∑
k=0

(−1)k n

n− k

(
n− k
k

)
(xy)k(x+ y)n−2k (1)

(see, for example, [2, Section 9.8]).
We separate the k = 0 term from the summation to get

xn + yn = (x+ y)n +

bn/2c∑
k=1

(−1)k n

n− k

(
n− k
k

)
(xy)k(x+ y)n−2k. (2)

The Binomial Theorem tells us that

(x+ y)n =
n∑

r=0

(
n

r

)
xn−ryr = xn + yn +

n−1∑
r=1

(
n

r

)
xn−ryr (3)

Substituting this expression for (x+ y)n into equation (2) yields

xn + yn = xn + yn +
n−1∑
r=1

(
n

r

)
xn−ryr +

bn/2c∑
k=1

(−1)k n

n− k

(
n− k
k

)
(xy)k(x+ y)n−2k.
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Hence,
n−1∑
r=1

(
n

r

)
xn−ryr +

bn/2c∑
k=1

(−1)k n

n− k

(
n− k
k

)
(xy)k(x+ y)n−2k = 0. (4)

Thus, when combining the two sums, the coefficient of each xn−ryr term must equal 0. We
expand the second summand in order to identify all terms of the form xn−ryr. The Binomial
Theorem tells us that, for each k,

(x+ y)n−2k =
n−2k∑
j=0

(
n− 2k

j

)
xn−2k−jyj.

Hence,

(xy)k(x+ y)n−2k =
n−2k∑
j=0

(
n− 2k

j

)
xn−k−jyj+k. (5)

The values of j that yield xn−ryr terms are j = r − k. Note that we must have k ≤ r, since
otherwise j ≤ 0. Thus, the coefficient of xn−ryr in equation (5) is

r∑
k=1

(
n− 2k

r − k

)
.

Hence, the sum of the coefficients of the xn−ryr terms in equation (4) is

r∑
k=0

(−1)k n

n− k

(
n− k
k

)(
n− 2k

r − k

)
= 0,

where the k = 0 term is
(
n
r

)
, which comes from the first summation in equation (4).

Remark 2. The expressions n
n−k

(
n−k
k

)
that appear in Theorem 2.1 are referred to as the Triangle

of coefficients of Lucas (or Cardan) polynomials, denoted T (n, k), in the On-Line Encyclopedia
of Integer Sequences [5]. We also recall that the nth Lucas number, Ln, is given by

Ln =

bn/2c∑
k=0

n

n− k

(
n− k
k

)
(see, for example, [2]).

3 Application to hyperelliptic curves

We now give an application of the identity in Theorem 2.1. Work on this application in
[1, Section 5.1] is what led the author to discover the identity in Theorem 2.1.

Let K be a field with char(K) 6= 2. A hyperelliptic curve is a compact Riemann surface
defined by a nonsingular equation of the form y2 = f(x), where f(x) ∈ K[x]. The degree of
the polynomial f(x) is either 2g + 2 or 2g + 1, where g is the genus of the curve. A defining
property of hyperelliptic curves is that they have degree two maps with 2g+2 branch points onto
the projective line P1 (see, for example, [3, Chapter 3], [4, Chapter 2]).
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In the section we will start with genus g hyperelliptic curves C of the form y2 = x2g+1 + x.
The map

φ(x, y) =

(
x2 + 1

x
,
y

xa

)
,

where a = g+1
2

, is a nonconstant morphism from C to some curve C ′. Note that the curve C ′ will
also be hyperelliptic. We initially define C ′ to be of the form

y2 = cdx
d + · · ·+ cd−ix

d−i + · · ·+ c0

and we will apply the transformation of variables given by φ to determine the coefficients cj .
Applying the transformation yields( y

xa

)2
= cd

(
x2 + 1

x

)d

+ · · ·+ cd−i

(
x2 + 1

x

)d−i

+ · · ·+ c0

y2

xg+1
= cdx

−d(x2 + 1)d + · · ·+ cd−ix
i−d(x2 + 1)d−i + · · ·+ c0

y2 = cdx
g+1−d(x2 + 1)d + · · ·+ cd−ix

g+1+i−d(x2 + 1)d−i + · · ·+ c0x
g+1.

Note that the degree of the expression in x will be g + 1− d+ 2d = g + 1 + d. In order for φ to
be a morphism from C to C ′, this last equation should, in fact, be the equation for the curve C.
Hence, we need cd = 1 and g + 1 + d = 2g + 1, which implies d = g. Consequently,

y2 = x(x2 + 1)g + · · ·+ cg−ix
1+i(x2 + 1)g−i + · · ·+ c0x

g+1. (6)

In order to determine the coefficients cj , we need to expand the right-hand side of the equation
and match coefficients with those of C. We now work through two examples to better understand
what the coefficients of C ′ will be.

Example 3.1. Let g = 5, so that C is the hyperelliptic curve y2 = x11 + x. From our above work
we know that the degree of C ′ will be 5. Letting

A1 = x(x2 + 1)5

= x11 + 5x9 + 10x7 + 10x5 + 5x3 + x,

A2 = x3(x2 + 1)3

= x9 + 3x7 + 3x5 + x3,

A3 = x5(x2 + 1)1

= x7 + x5,

we see that A1 − 5A2 + 5A3 = x11 + x. Hence, φ is a morphism from C to y2 = x5 − 5x3 + 5x.

Example 3.2. Now let g = 6, so that C is the hyperelliptic curve y2 = x13 + x. From our above
work we know that the degree of C ′ will be 6. Letting
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B1 = x(x2 + 1)6

= x13 + 6x11 + 15x9 + 2− x7 + 15x5 + 6x3 + x,

B2 = x3(x2 + 1)4

= x11 + 4x9 + 6x7 + 4x5 + x3,

B3 = x5(x2 + 1)2

= x9 + 2x7 + x5,

B4 = x7(x2 + 1)0

= x7,

we see that B1 − 6B2 + 9B3 − 2B4 = x13 + x. Hence, φ is a morphism from C to the curve
y2 = x6 − 6x4 + 9x2 − 2.

While working on [1, Section 5.1], the author determined (by hand) the curve C ′ for g = 11,
obtaining 1, 11, 44, 77, 55, and 11, with alternating signs (see Table 1 below). The author entered
this sequence of numbers into the On-line Encyclopedia of Integer Sequences [5] search bar
and found that these numbers are the Triangle of coefficients of Lucas (or Cardan) polynomials,
T (n, k). The coefficients that appear in Examples 3.1 and 3.2 are also of the form T (n, k). As
noted in Remark 2,

T (n, k) =
n

n− k

(
n− k
k

)
.

This leads us to the following theorems.

Theorem 3.3. Let C be the hyperelliptic curve y2 = x2g+1 + x and let C ′ be the hyperelliptic
curve

y2 =

bg/2c∑
k=0

(−1)k g

g − k

(
g − k
k

)
xg−2k.

Then the map

φ(x, y) =

(
x2 + 1

x
,
y

xa

)
,

where a = g+1
2

, is a nonconstant morphism from C to C ′.

We can generalize Theorem 3.3. Let c ∈ Q∗ be constant and ζ be a primitive g-th root of
unity. In the following theorem we work over the field F = Q(ζ, c1/g).

Theorem 3.4. Let C be the hyperelliptic curve y2 = x2g+1 + cx and let Ci be the hyperelliptic
curve

y2 =

bg/2c∑
k=0

(−1)k g

g − k

(
g − k
k

)
ζ ikck/gxg−2k

for i = 0, 1. Then the map

φi(x, y) =

(
x2 + ζ ic1/g

x
,
y

xa

)
,

where a = g+1
2

, is a nonconstant morphism from C to Ci.
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Theorem 3.3 follows from Theorem 3.4 by letting c = 1 and i = 0. Furthermore, since

g

g − k

(
g − k
k

)
=

[(
g − k
k

)
+

(
g − k − 1

k − 1

)]
(see, for example, [2, Section 9.9]), Theorem 3.4 also generalizes Lemma 5.1 in [1] because we
are no longer restricting g to be odd. Though the proof of Theorem 3.4 is nearly identical to the
proof of Lemma 5.1 in [1], we include it here for the sake of completion.

Proof of Theorem 3.4. Recall Lockwood’s identity from equation (1)

An +Bn =

bn/2c∑
k=0

(−1)k n

n− k

(
n− k
k

)
(AB)k(A+B)n−2k.

Letting n = g, A = x2, and B = ζ ic1/g yields

x2g + c =

bg/2c∑
k=0

(−1)k g

g − k

(
g − k
k

)
ζ ikck/gx2k(x2 + ζ ic1/g)g−2k,

since ζ ig = 1. We multiply both sides by x to get

x2g+1 + cx =

bg/2c∑
k=0

(−1)k g

g − k

(
g − k
k

)
ζ ikck/gx2k+1(x2 + ζ ic1/g)g−2k. (7)

We now demonstrate that φi is indeed a morphism between C and Ci. We apply the
transformation of variables to Ci to get

( y
xa

)2
=

bg/2c∑
k=0

(−1)k g

g − k

(
g − k
k

)
ζ ikck/g

(
x2 + ζ ic1/g

x

)g−2k

y2 =

bg/2c∑
k=0

(−1)k g

g − k

(
g − k
k

)
ζ ikck/gx2k+1

(
x2 + ζ ic1/g

)g−2k
= x2g+1 + cx,

where the last equality holds by equation (7). Hence, we have shown that φi is a morphism from
C to Ci.

Table 1 below gives Ci for values of g up to 11 and for c = 1. Note that this table expands on
the table that appears in [1, Section 5.1].
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g curve Ci

5 y2 = x5 − 5ζ ix3 + 5ζ2ix

6 y2 = x6 − 6ζ ix4 + 9ζ2ix2 − 2ζ3i

7 y2 = x7 − 7ζ ix5 + 14ζ2ix3 − 7ζ3ix

8 y2 = x8 − 8ζ ix6 + 20ζ2ix4 − 16ζ3ix2 + 2ζ4i

9 y2 = x9 − 9ζ ix7 + 27ζ2ix5 − 30ζ3ix3 + 9ζ4ix

10 y2 = x10 − 10ζ ix8 + 35ζ2ix6 − 50ζ3ix4 + 25ζ4ix2 − 2ζ5i

11 y2 = x11 − 11ζ ix9 + 44ζ2ix7 − 77ζ3ix5 + 55ζ4ix3 − 11ζ5ix

Table 1. Examples of curves Ci from Theorem 3.4

3.1 Higher genus observations

The following corollaries to Theorem 3.3 describe patterns for some of the above coefficients.

Corollary 3.4.1. For all g, the coefficient of xg−2 will always be −gζ i.

Proof. This coefficient corresponds to k = 1, which equals

(−1)1 g

g − 1

(
g − 1

1

)
ζ i = −gζ i.

Corollary 3.4.2. When g is even, the lowest degree term will always be (−1)g/22ζ ig/2.

Proof. Note that when g is even, the lowest degree term corresponds to k = g/2, which yields
x0. We compute the coefficient to be

(−1)g/2 g

g − g/2

(
g − g/2
g/2

)
ζ ig/2 = (−1)g/22ζ ig/2.

Corollary 3.4.3. When g is odd, the lowest degree term will always be (−1)(g−1)/2gxζ i(g−1)/2.

Proof. When g is odd, the lowest degree term corresponds to k = (g − 1)/2, which yields x1.
We compute the coefficient to be

(−1)(g−1)/2 g

g − (g − 1)/2

(
g − (g − 1)/2

(g − 1)/2

)
ζ i(g−1)/2

= (−1)(g−1)/2 g

(g + 1)/2

(
(g − 1)/2 + 1

(g − 1)/2

)
ζ i(g−1)/2

= (−1)(g−1)/2gζ i(g−1)/2.
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