Enrique Salcido and Emil Daniel Schwab

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 1, Pages 86—92

DOI: 10.7546/nntdm.2020.26.1.86-92

**Download full paper: PDF, 178 Kb**

## Details

### Authors and affiliations

Enrique Salcido

*MS student, Department of Mathematical Sciences, The University of Texas at El Paso
El Paso, Texas 79968, USA*

Emil Daniel Schwab

*Department of Mathematical Sciences, The University of Texas at El Paso
El Paso, Texas 79968, USA*

### Abstract

In this note we consider identities in the alphabet *X* = {*x*, *y*}. This note is self-contained and the aim is to describe gradually the identities partition (with three parameters) of the free semigroup *X*^{+} for the class of monoids *B _{n}* = {

*a*,

*b*|

*ba*=

*b*} (

^{n}*n*> 0).

### Keywords

- Semigroup identities
- Checking identities
- Identities partition

### 2010 Mathematics Subject Classification

- 68R15
- 08A50

### References

- Adjan, S.I. (1967). Defining relations and algorithmic problems for groups and semigroups, American Mathematical Society, Providence, (English translation of Proceeding of the Steklov Institute of Mathematics Vol. 85).
- Geroldinger, A. & Schwab, E. D. (2018). Sets of lengths in atomic unit-cancellative finitely presented monoids, Colloq. Math., 151, 171–187.
- Pastijn, F. (2006). Polyhedral convex cones and the equational theory of the bicyclic semigroup, J. Aust. Math. Soc., 81, 63–96.
- Shleifer, F. G. (1990). Looking for identities on a bicyclic semigroup with computer assistance, Semigroup Forum, 41, 173–179.
- Shneerson, L. M. (1985). On the varieties generated by semigroups and monoids with one defining relation, Siberian Math. Journal 26, 202 (Abstract), Preprint VINITI No 3641–84, 1–32.

## Related papers

## Cite this paper

Salcido, E. & Schwab, E. D. (2020). A note on identities in two variables for a class of monoids. Notes on Number Theory and Discrete Mathematics, 26(1), 86-92, doi: 10.7546/nntdm.2020.26.1.86-92.