Deepa Sinha and Bableen Kaur

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 4, Pages 150—157

DOI: 10.7546/nntdm.2019.25.4.150-157

**Download full paper: PDF, 154 Kb**

## Details

### Authors and affiliations

Deepa Sinha

*Department of Mathematics, South Asian University
Akbar Bhawan, Chanakyapuri, New Delhi 110021, India
*

Bableen Kaur

*Department of Mathematics, South Asian University
Akbar Bhawan, Chanakyapuri, New Delhi 110021, India
*

### Abstract

For a commutative ring *R* with unity (1 ≠ 0), the zero-divisor graph of *R*, denoted by *Γ*(*R*), is a simple graph with vertices as elements of *R* and two distinct vertices are adjacent whenever the product of the vertices is zero. This article aims at gaining a deeper insight into the basic structural properties of zero-divisor graphs given by Beck.

### Keywords

- Commutative ring
- Zero-divisors
- Diameter
- Girth
- Path graph
- Complete graph
- Complete bipartite graph
- Star graph

### 2010 Mathematics Subject Classification

- 05C25
- 05C75

### References

- Anderson, F. F., & Naseer, M. (1993). Beck’s coloring of a commutative ring, J. Algebra, 159, 500–514.
- Anderson, F. F., Frazier, A., Lauve, A., & Livingston, P. S. (1999). The zero-divisor graph of a commutative ring, II, Lect. Notes Pure Appl. Math., 220, 61–72.
- Anderson, D. F., & Livingston, P. S. (1999) The zero-divisor graph of a commutative ring, J. Algebra, 217, 434–447.
- Beck, I. (1988). Coloring of commutative rings, J. Algebra, 116, 208–226.
- Diestel, R. (2000). Graph theory, Springer-Verlag Berlin and Heidelberg GmbH & amp.
- Dummit, D. S., & Foote, R. M. (2004). Abstract algebra, John Wiley and Sons.
- Fine, B. (1993). Classification of finite rings of order
*p*^{2}, Math. Mag., 248–252. - Ganesan, N. (1964). Properties of rings with a finite number of zero divisors, Math. Ann., 157, 215–218.
- Harary, F. (1969). Graph theory, Addison-Wesley, Reading, MA.
- Kaplansky, I. (1974). Commutative rings, University of Chicago Press, Chicago.
- Levy, R., & Shapiro, J. (2002). The zero-divisor graph of Von Neumann regular rings, Comm. Algebra, 30, 745–750.
- McDonald, B. R. (1974). Finite rings with identity, Marcel Dekker Incorporated.
- Mulay, S. B. (2002). Cycles and symmetries of zero-divisors, Comm. Algebra, 30,

3533–3558. - Redmond, S. P. (2003). An deal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31, 4425–4443.

## Related papers

## Cite this paper

APASinha, D. & Kaur, B. (2019). On Beck’s zero-divisor graph. Notes on Number Theory and Discrete Mathematics, 25(4), 150-157, doi: 10.7546/nntdm.2019.25.4.150-157.

ChicagoSinha, Deepa, and Bableen Kaur. “On Beck’s Zero-divisor Graph.” Notes on Number Theory and Discrete Mathematics 25, no. 4 (2019): 150-157, doi: 10.7546/nntdm.2019.25.4.150-157.

MLASinha, Deepa, and Bableen Kaur. “On Beck’s Zero-divisor Graph.” Notes on Number Theory and Discrete Mathematics 25.4 (2019): 150-157. Print, doi: 10.7546/nntdm.2019.25.4.150-157.