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Abstract: For a commutative ring R with unity (1 6= 0), the zero-divisor graph of R, denoted
by Γ(R), is a simple graph with vertices as elements of R and two distinct vertices are adjacent
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1 Introduction

For vocabulary and notations in graph theory, not explicitly mentioned in this article, we refer the
reader to the standard textbooks [5, 9]; for ring theory, see [6, 10, 12]. Unless stated otherwise, the
unity of a ring is different from its additive identity (1 6= 0) and all rings examined in this article
are commutative. All rings have at least two elements. As usual, the ring of integers modulo n is
denoted by Zn and finite field with p elements by Fp.

The zero-divisor graph of a ring R, denoted by Γ(R), is a simple graph with vertices as
elements of R and two distinct vertices x and y are adjacent if and only if xy = 0. This concept
was introduced by Beck [4] in 1988, but he mainly worked on colorings of R. The study of
colorings of a commutative ring was then continued by Anderson and Naseer [1]. Likewise,
Anderson and Livingston [3] gave an altered definition. They associate a simple graph with
vertices as elements of Z(R)∗ = Z(R) \ {0}, where Z(R) is the set of zero-divisors of R and the
adjacency between two distinct vertices is defined in the same way as that of Beck’s zero-divisor
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graph. Since then an ample research [2, 8, 11, 13, 14] has been done on zero-divisor graphs given
by Anderson and Livingston. But to the best of our understanding, nobody has worked on the
definition presented by Beck [4]. In this article, we limited our research to Beck’s definition of
zero-divisor graphs.

2 Main results

This section presents results analogous to the case for zero-divisor graphs found in Anderson and
Livingston [3, Section 2]. We show that Γ(R) is always connected and has small diameter and
girth. We further determine which complete graphs and star graphs may be realized as Γ(R). One
can quickly notice the following basic facts about the zero-divisor graphs.

Proposition 2.1. For any ring R, Γ(R) always contains a universal vertex (i.e., the maximum
degree ∆(Γ(R)) = |Γ(R)| − 1 = |R| − 1). Further, if R is a commutative ring with unity, then
minimum degree δ(Γ(R)) = 1.

Proof. It is clear, for x ∈ R (x 6= 0), 0x is an edge in Γ(R). Therefore deg(0) = |R| − 1

(= |Γ(R)| − 1). Also, for a commutative ring with unity R, since 1 · x = x · 1 = 0 holds only
when x = 0, Γ(R) always contains at least one pendant vertex and hence δ(Γ(R)) = 1.

In fact, 0 is the only universal vertex. Further, for a commutative ring with unity R, it is the
only cut vertex of Γ(R). As for any x ∈ R \ Z(R) and y ∈ Z(R)∗, 0 lies on every x− y path.

Lemma 2.2. For any ring R, there always exists at least one cycle of length 3 in Γ(R), whenever
there are more than one nonzero zero-divisors.

Proof. Let us suppose |Z(R)∗| > 1. Due to this, there exist at least two nonzero zero-divisors x,
y ∈ R such that xy = 0 and consequently 0 − x − y − 0 is a cycle of length 3 in Γ(R). Hence,
rest of the result follows.

We now give a stronger condition for the existence of a cycle of length 3 in Γ(R).

Theorem 2.3. For any ring R, there exists a cycle of length 3 in Γ(R) if and only if |Z(R)∗| > 1.

Proof. For proving the necessity part, let us assume |Z(R)∗| ≤ 1. Since Γ(R) contains a cycle
of length 3, it necessarily contains three distinct vertices x, y, and z such that x − y − z − x is
a cycle in Γ(R). As a result, the elements x, y, and z are the zero-divisors of a ring R. Also, at
the most one of these elements can be 0 of a ring. Hence, the set of nonzero zero-divisors must
contain at least two elements, a contradiction to our assumption. Therefore |Z(R)∗| > 1.

The sufficient part follows from Lemma 2.2.

Figure 1 gives the zero-divisor graphs for different rings. Parallel to the case in [3],
nonisomorphic rings may have the same zero-divisor graph, and zero-divisor graph does not
distinguish nilpotent elements.
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Example 2.4. Figure 1 shows possible graphs Γ(R) with |Γ(R)| ≤ 4, where up to isomorphism,
each graph may be realized as Γ(R) by precisely the following rings, respectively:

(a) Z2

(b) Z3

(c) Z4 or Z2[x]/〈x2〉 or F4

(d) Z2 × Z2

(a)

(b)

(c) (d)

Figure 1. Examples showing all possible zero-divisor graphs with |Γ(R)| ≤ 4

Up to isomorphism, there is a unique commutative ring with a unity of order p, where p is
prime. As a result, Figure 1 shows the only possible zero-divisor graphs with 1 < |Γ(R)| ≤ 3.
Note that Γ(R) can never be a cycle of length 3. Our graphs are different from that of [3].

Also, it is well identified that out of eleven rings of order four, only four are commutative
rings with unity [7], which are mentioned in above example. Again we get different graphs.

If diam(G) and g(G) represents diameter and girth of the graphG, respectively, then we have
the following results.

Theorem 2.5. For any ring R, the following conditions hold:

1. Γ(R) is finite if and only if R is finite.

2. Γ(R) is connected and diam(Γ(R)) ≤ 2. Furthermore, if Γ(R) contains a cycle, then
g(Γ(R)) ≤ 5.

Proof.

1. The proof of this part is straightforward.

2. Let x and y be distinct vertices of Γ(R). If either of x = 0 or y = 0, then xy is an edge in
Γ(R), thus diam(x, y) = 1. Assume that both x and y are nonzero.

Case 1. If x, y ∈ R \ Z(R), then x− 0− y is a path of length 2, thus d(x, y) = 2.
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Case 2. If x, y ∈ Z(R)∗. If xy = 0, then d(x, y) = 1. If xy is nonzero, then x − 0 − y is a
path of length 2, thus d(x, y) = 2.

Case 3. If x ∈ R\Z(R) and y ∈ Z(R)∗, then x−0−y is a path of length 2, thus d(x, y) = 2.

Thus Γ(R) is connected and diam(Γ(R)) ≤ 2. By [5, Proposition 1.3.2], if Γ(R) contains
a cycle, then g(Γ(R)) ≤ 5.

Remark 2.6. For each integer n ≥ 1, let Pn be a path graph on n vertices. By Example 2.4 and
Theorem 2.5, the path graph Pn can be realized as Γ(R) if and only if n = 2 or 3.

Theorem 2.7. For a finite commutative ring with unity R, Γ(R) is a path graph on n vertices if
and only if R is isomorphic to Z2 or Z3.

Proof. The proof of this theorem is pretty much apparent from the above remark.

We now discuss girth in detail.

Theorem 2.8. For a finite commutative ring with unity R, g(Γ(R)) = ∞ if and only if R is
isomorphic to a finite field or Z4 or Z2[x]/〈x2〉.

Proof. For the sake of necessity, suppose g(Γ(R)) = ∞. To prove the result, we work with the
cardinality of the set of nonzero zero-divisors. In this view, we claim that |Z(R)∗| ≤ 1. Suppose
to the contrary that |Z(R)∗| > 1. By Lemma 2.2, Γ(R) contains a cycle of length 3, and therefore
g(Γ(R)) = 3, which is a contradiction to our hypothesis. Hence |Z(R)∗| ≤ 1. Furthermore, up to
isomorphism, the only finite commutative rings with unity having |Z(R)∗| ≤ 1 are finite fields,
Z4, and Z2[x]/〈x2〉. Hence, R must be one of them.

The sufficient part is easy to see as if we take any of the above-listed rings, then Γ(R) contains
no cycle, and hence result follows.

Corollary 2.9. For an infinite field F, g(Γ(F)) =∞.

Proof. Since for an infinite field F, |Z(F)∗| = 0 (i.e., |Z(F)∗| ≤ 1). Hence, result follows.

We now aim at improving the condition regarding girth given in Theorem 2.5.

Theorem 2.10. Let R be a ring. If Γ(R) contains a cycle, then g(Γ(R)) = 3.

Proof. Let us suppose Γ(R) contains a cycle. We claim that the length of shortest cycle present in
Γ(R) is 3. In this view, if there is a cycle of length 3, then result follows itself. Now, let us assume
that there is no cycle of length 3 in Γ(R). In this case, it contains a cycle x1− x2− · · · − xn− x1
for n ≥ 4. Next, if for all i such that 1 ≤ i ≤ n, xi is a nonzero element of a ring R, then 0xi
is an edge in Γ(R). Therefore, for 1 ≤ i ≤ n − 1, 0 − xi − xi+1 − 0 is a cycle of length 3 in
Γ(R). Further, at the most one of the xi can be 0 of a ring. Without loss of generality assume
x1 = 0. Consequently, 0 − x2 − x3 − 0 is a cycle of length 3 in Γ(R). Hence, in both the cases
g(Γ(R)) = 3.
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We have seen above that if Γ(R) contains a cycle, then it always contains a cycle of length
3 and further, there exists no ring R with Γ(R) isomorphic to a cycle C3. We can now state that
Γ(R) cannot be an n-gon for any n ≥ 3. However, for each n ≥ 3, there is a zero-divisor graph
with an n-cycle. For n ≥ 2, let Rn = Z2[x1, x2, ..., xn]/〈x21, x22, . . . , x2n, x1x2, x2x3, . . . , xnx1〉.
In this case, Γ(Rn) is finite and has a cycle of length n + 1, i.e., 0 − x1 − x2 − · · · − xn − 0.
According to the definition given by Anderson and Livingston [3], Γ(R) can be a cycle C3 or C4.
But, for Beck’s definition, Cn can never be realized as Γ(R) for any n ≥ 3.

With this let us now shift our focus to complete graphs and star graphs. Why we are putting
stress on the study of star graphs as a zero-divisor graph is because of the subgraph of Γ(R)

induced by the set HR = R \ Z(R)∗. The subgraph induced by the set HR is a star graph on
|R| − |Z(R)|+ 1 vertices with 0 as a center.

Moreover, the subgraph of Γ(R) induced by the set HC
R = Z(R)∗ is zero-divisor graph

reported in the article [3] by Anderson and Livingston. This work is a generalization of their
zero-divisor graphs.

Remark 2.11. For n ≥ 1, let Kn be the complete graph on n vertices. In Figure 1, only graph
(a) is a complete graph K2.

Next, we show K2 (i.e., the complete graph on two vertices) is the only complete graph which
can be realized as Γ(R).

Theorem 2.12. For a finite commutative ring with unity R, Γ(R) is complete graph if and only if
R is isomorphic to Z2.

Proof. Before proving the result, note that for a finite commutative ring with unity, a nonzero
element is either a unit or a zero-divisor. Towards proving the necessity part, suppose that Γ(R)

is complete graph Kn for any n ≥ 1. Now, the following cases may occur:

1. If n = 1.
In this case, R must be a trivial ring, and since we are concerned with a commutative ring
having unity (1 6= 0), it does not serve our hypothesis. Therefore, this case is not possible.

2. If n = 2.
For this regard, R must contain precisely two elements. Moreover, the only commutative
ring with unity having two elements is Z2. Hence, R is isomorphic to Z2.

3. If n ≥ 3.
For x, y ∈ R, since Γ(R) is complete graph, xy = 0. As a consequence, for x ∈ R, x is
a zero-divisor. Due to this, every nonzero element of a ring R is a zero-divisor, and none
of the element is a unit, which contradicts our hypothesis. Therefore, Γ(R) cannot be a
complete graph Kn for any n ≥ 3.

So, if Γ(R) is a complete graph, then Γ(R) ∼= K2 andR ∼= Z2. The sufficient part follows directly
from the remark above.

However, if we relax any of the conditions in the hypothesis, then the result may differ. For
n ≥ 1, let Rn = Zn, the ring of integer modulo n in which product of any two elements is zero.
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For any n ≥ 1, Rn is then a finite commutative ring “without unity” such that Γ(Zn) ∼= Kn.
Therefore, for n ≥ 1, Kn may be realized as Γ(R) if and only if R is a finite commutative ring
without unity.

Additionally, an infinite complete graph may be realized as Γ(R). Let R = Z with usual
addition and product of any two elements is zero. In this case, Γ(Z) is an infinite complete graph.
Therefore, one can find infinite rings and rings without unity for Kn to be realized as Γ(R).

If Km,n denotes a complete bipartite graph with vertex set having m and n elements, then we
have the following results. Further, K1,n denotes a star graph. The center of a graph is the set
of all vertices of minimum eccentricity; the center of a star graph K1,n is the vertex with degree
n− 1.

Theorem 2.13. For a finite commutative ring with unity R, Γ(R) is a complete bipartite graph if
and only if R is isomorphic to a finite field or Z4 or Z2[x]/〈x2〉. In particular, a star graph K1,r

may be realized as Γ(R) if and only if r = pn − 1 for some prime p and an integer n ≥ 1.

Proof. For necessity, let Γ(R) be a complete bipartite graph. We prove the result on the same
lines as that of Theorem 2.8. Of course, if |Z(R)∗| > 1, then Γ(R) contains C3 as a subgraph,
which is a cycle of an odd length. It contradicts our hypothesis, as a bipartite graph can never have
a cycle of an odd length as a subgraph. So we have |Z(R)∗| ≤ 1. Again, the only possible rings
are finite fields, Z4, and Z2[x]/〈x2〉. Moreover, Γ(Fpn) is a complete bipartite graph K1,pn−1, and
Γ(Z4) and Γ(Z2[x]/〈x2〉) is a complete bipartite graph K1,3.

For sufficiency, it is easy to analyze that zero-divisor graphs of above-mentioned finite com-
mutative rings with unity are complete bipartite graphs. Hence, the result follows.

Corollary 2.14. For an infinite field F, Γ(F) is an infinite complete bipartite graph.

Proof. The proof of the above corollary is easy to see.

Although, infinite fields are not only the case where a zero-divisor graph is an infinite com-
plete bipartite graph. Let R = Z with usual addition and multiplication. Since Z is an infinite
integral domain (i.e., it is not a field), Γ(Z) is an infinite star graph.

Besides, at this point, we take into account that in the case of fields, since the set of zero-
divisors contains only one element, i.e., the additive identity 0, the set HR as discussed earlier is
equal to the whole ring R. The subgraph induced by this set HR is itself the zero-divisor graph of
that ring. Out of the three possibilities discussed in Theorem 2.13, only fields carry this behaviour.
The subgraph induced by the set HR for the rings Z4 and Z2[x]/〈x2〉 is isomorphic to a star graph
K1,2, and hence does not contain a cycle.

However, on the other hand, if Γ(R) contains a cycle, then also the subgraph induced by the
set HR is a star graph on |R| − |Z(R)| + 1 vertices with 0 as a center. It is easy to verify that 0

is the only vertex adjacent to every other vertex and no additional adjacency can be found in this
induced subgraph.

We end with the following theorems which are an outcome of the preceding discussion.

Theorem 2.15. Let R be a commutative ring with unity. Then exactly one of the following holds:
1. Γ(R) is a star graph.

2. Γ(R) has a cycle of length 3.
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Proof. By using Theorem 2.3, Theorem 2.13 and from the fact that either |Z(R)∗| ≤ 1 or
otherwise, the proof is evident.

Theorem 2.16. Let R be a finite commutative ring with unity. The following statements are
equivalent:

1. |Z(R)∗| ≤ 1 (i.e., the set of nonzero zero-divisors contains at the most one element); or

2. g(Γ(R)) =∞ (i.e., Γ(R) contains no cycle); or

3. Γ(R) is a complete bipartite graph, precisely a star graph; or

4. R is isomorphic to one of the following rings: Fpn , where p is prime and n ∈ N, Z4, and
Z2[x]/〈x2〉.

Proof. The proof follows from Theorem 2.3, Theorem 2.8 and Theorem 2.13.

Theorem 2.16 is still valid if we rest the “finite” condition, except for the statement 4 where
infinite field must accompany other rings to the list.

3 Conclusion

In this article, we present the readers, characteristics of zero-divisor graphs originated by Beck
in the year 1988. We further compare the results with a well-known work done by Anderson
and Livingston in the year 1999. If Γ(R) (respectively, Γ′(R)) denotes the zero-divisor graph
given by Beck (respectively, Anderson and Livingston), then Table 1 explains the need for doing
this analysis. The concept of Beck’s zero-divisor graph has been beautifully extended to Beck’s
signed zero-divisor graph in some other article for application purposes.

Property Definition given by Anderson
and Livingston

Definition given by Beck

Number of possible graphs There are seven Γ′(R) with 1 ≤
|Γ′(R)| ≤ 4.

There are only four Γ(R) with
1 ≤ |Γ(R)| ≤ 4; one of each
order 2, 3 and two of order 4.

Cycle Cn, n ≥ 1 Γ′(R) can be a cycle C3 or C4,
but not Cn for any n ≥ 5.

Γ(R) can never be a cycle Cn

for any n.
Complete graph Kr, r ≥ 1 Kr may be realized as Γ′(R) if

and only if r = pn − 1, for some
prime p and an integer n ≥ 1.

Kr may be realized as Γ(R) if
and only if r = 2.

Complete Bipartite graph
Km,n, m, n ≥ 1

Km,n may be realized as Γ′(R)

if and only if m = pr − 1 and
n = qs − 1, for some prime p
and q and an integers r, s ≥ 1.

Km,n may be realized as
Γ(R) if and only ifm = 1 and
n = pr − 1, for some prime p
and an integers r ≥ 1.

Table 1. Table showing variations between Γ′(R) and Γ(R)
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