On the software computation of the formulae for the n-th prime number

Dimitar G. Dimitrov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 3, Pages 198-206
DOI: 10.7546/nntdm.2019.25.3.198-206
Download full paper: PDF, 188 Kb

Details

Authors and affiliations

Dimitar G. Dimitrov
Faculty of Mathematics and Informatics
Sofia University
5 James Bourchier Str., Sofia, Bulgaria

Abstract

Many formulae for calculating the n-th prime number exist. In this paper, a comparison of the computation time of different existing formulae is made.

Keywords

  • Prime number
  • Arithmetic Formula
  • Comparison
  • Software computation

2010 Mathematics Subject Classification

  • 11A41
  • 11A25
  • 11-04

References

  1. Agrawal, M., Kayal., N., & Saxena, N. (2004). PRIMES is in P, Annals of Mathematics, 160 (2), 781–793.
  2. Atanassov, K. (2001). A new formula for the n-th prime number, Comptes Rendus de l’Academie Bulgare des Sciences, 54 (7), 5–6.
  3. Atanassov, K. (2009). A remark on an arithmetic function. Part 3, Notes on Number Theory and Discrete Mathematics, 15 (4), 23–27.
  4. Atanassov, K. (2013). A formula for the n-th prime number, Comptes Rendus de l’Academie bulgare des Sciences, 66, 4, 503–506.
  5. Atanassov, K., Formulas for the n-th prime number, Unpublished manuscript.
  6. Gandhi, J. (1971). Formulae for the nth prime, Proc. Washington State Univ. Conf. on Number Theory, Washington State Univ., 96–101.
  7. Kaddoura, I., & Abdul-Nabi S. (2012). On Formula to Compute Primes and the nth Prime, Applied Mathematical Sciences, 6, 76, 3751–3757.
  8. Mahapatra, S. (2018). Program for Mobius Function, GeeksForGeeks.org, Available online at: https://www.geeksforgeeks.org/program-mobius-function/.
  9. Rath B. (2019). Efficient program to print all prime factors of a given number, GeekForGeeks.org, Available online at: https://www.geeksforgeeks.org/
    print-all-prime-factors-of-a-given-number/.
  10. Ribenboim, P. (1995). The New Book of Prime Number Records, Springer, New York.
  11. Ruiz, S. M. (2000). A functional recurrence to obtain the prime numbers using the Smarandache Prime Function, Smarandache Notions J., Vol. 11, p. 56.
  12. Ruiz, S. M. (2005). A new formula for the nth prime. Smarandache Notions Journal, Vol. 15.
  13. Stein, J. (1967). Computational problems associated with Racah algebra, Journal of Computational Physics, 1 (3), 397—405.

Related papers

Cite this paper

APA

Dimitrov , D. G. (2019). On the software computation of the formulae for the n-th prime number. Notes on Number Theory and Discrete Mathematics, 25(3), 198-206, doi: 10.7546/nntdm.2019.25.3.198-206.

Chicago

Dimitar G. Dimitrov . (2019). “On the software computation of the formulae for the n-th prime number.” Notes on Number Theory and Discrete Mathematics. Notes on Number Theory and Discrete Mathematics 25, no. 3 (2019): 198-206, doi: 10.7546/nntdm.2019.25.3.198-206.

MLA

Dimitar G. Dimitrov . (2019). “On the software computation of the formulae for the n-th prime number” Notes on Number Theory and Discrete Mathematics 25.3 (2019): 198-206. Print, doi: 10.7546/nntdm.2019.25.3.198-206.

Comments are closed.