Sequences of Tridovan and their identities

Renata Passos Machado Vieira and Francisco Regis Vieira Alves
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 3, Pages 185-197
DOI: 10.7546/nntdm.2019.25.3.185-197
Download full paper: PDF, 197 Kb

Details

Authors and affiliations

Renata Passos Machado Vieira
Department of Mathematics
Institute Federal of Technology of the State of Ceará (IFCE)
Fortaleza-CE, Brazil

Francisco Regis Vieira Alves
Department of Mathematics
Institute Federal of Technology of the State of Ceará (IFCE)
Fortaleza-CE, Brazil

Abstract

This work introduces the so-called Tridovan sequence which is an extended form of the Padovan sequence. In a general definition, this extension adds one more term to the Padovan recurrence relation, considering now the three terms preceding the penultimate one. Studies carried out on the proposed extension reveal properties of the positive and negative integer index, the sum of all, even and odd terms, the obtaining Tridovan Q-matrix and finally the Tridovan initial terms generalization.

Keywords

  • Sequence of Tridovan
  • Positive indices
  • Negative indices
  • Generating matrix

2010 Mathematics Subject Classification

  • 11B37
  • 11B39

References

  1. 21st Century (Dolciani Mathematical Expositions). American Mathematical Society, Edition: UK ed.
  2. Alves, F. R. V. (2015). Sequência Generalizada de Fibonacci e Relações com o número Áureo. Boletim Cearense de Educação e História da Matemática. Ceará, 2 (6), 30–36.
  3. Alves, F. R. V. (2015). Sobre a evolução histórica do modelo de Fibonacci: A classe das funções hiperbólicas de Fibonacci – FHF. Vidya, 35 (1), 133–146.
  4. Cereceda, L. J. (2015). Binet’s formula for generalized Tribonacci numbers. International Journal of Mathematical Education in Science and Technology, 46 (8), 1235–1243.
  5. Feinberg, M. (1963). Fibonacci-Tribonacci. The Fibonacci Quarterly, [S.l.], 1 (3), 209–222.
  6. Iliopoulos, V. (2015). The plastic number and its generalized polynomial. Cogent Mathematics, 2, 1–6.
  7. Koshy, T. (2011). Fibonacci and Lucas Numbers with Applications. New York: John Wiley and Sons.
  8. Marohnic, L., & Strmecki, T. (2013). Plastic number: Construction and applications. Advanced Research in Scientific Areas, 2, 1523–1528.
  9. Miller, M. D. (1971). On Generalized Fibonacci Numbers. The American Mathematical Monthly, 78 (10), 1108–1109.
  10. Shannon, A. G., Horadam, A. F., & Anderson, P. G. (2006). The auxiliary equation associated with the plastic number. Notes on Number Theory and Discrete Mathematics, 12 (1), 1–12.
  11. Sokhuma, K. (2013). Padovan Q-matrix and the generalized relations. Applied Mathematical Sciences. 7 (56), 2777–2780.
  12. Stewart, I. (2000). L´Univers des Nombres. Paris: Belin pour la Science.

Related papers

Cite this paper

APA

Vieira, R. P. M. & Alves, F. R. V. (2019). Sequences of Tridovan and their identities. Notes on Number Theory and Discrete Mathematics, 25(3), 185-197, doi: 10.7546/nntdm.2019.25.3.185-197.

Chicago

Vieira, R. P. M. & Alves, F. R. V. (2019). “Sequences of Tridovan and their identities.” Notes on Number Theory and Discrete Mathematics. Notes on Number Theory and Discrete Mathematics 25, no. 3 (2019): 185-197, doi: 10.7546/nntdm.2019.25.3.185-197.

MLA

Vieira, R. P. M. & Alves, F. R. V. (2019). “Sequences of Tridovan and their identities.” Notes on Number Theory and Discrete Mathematics 25.3 (2019): 185-197. Print, doi: 10.7546/nntdm.2019.25.3.185-197.

Comments are closed.