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Abstract: This work introduces the so-called Tridovan sequence which is an extended form of 
the Padovan sequence. In a general definition, this extension adds one more term to the 
Padovan recurrence relation, considering now the three terms preceding the penultimate one. 
Studies carried out on the proposed extension reveal properties of the positive and negative 
integer index, the sum of all, even and odd terms, the obtaining Tridovan Q-matrix and finally 
the Tridovan initial terms generalization. 
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1 Introduction 

The Italian architect Richard Padovan (born 1935) discovered a kind of “cousin” of the  
well-known Fibonacci sequence, the Padovan numbers, which is also recursive, arithmetic and 
linear. Padovan was born in the city of Padua [12], a village a little far from the same birthplace 
of Fibonacci [1]. 

The Padovan sequence is defined by the recursive relation Pn = Pn 2 + Pn 3, n  3, where 
Pn is the n-th term of the sequence. The first sequence terms are defined by P0 = P1 = P2 = 1, 
which may generate the following initial elements: 1, 1, 1, 2, 2, 3, 4, 5, 7, ... .  
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An important feature of this sequence is the neighboring terms relationship Pn+1 / Pn, which 
converges to a value known as plastic number or plastic constant [8, 10]. The approximate 
value of the plastic number is ψ = 1.324718... and the ways of calculating this value are 
presented in the [6, 8]. 

Based on the Fibonacci sequence, [4, 9] proposed a sequence extension considering not only 
the sum of two previous elements but three or four previous elements. Following the same path 
it is possible to extend the Padovan numbers considering a greater number of terms to estimate 
the next one. 

The geometric representation of the Padovan sequence occurs through the Padovan spiral, as 
shown in Figure 1. This is composed by the juxtaposition of equilateral triangles respecting a 
characteristic construction rule. Consider the side 1 highlighted triangle in blue as the initial 
triangle. The spiral formation of the spiral is given by the addition of a new equilateral triangle 
to the largest side of the formed polygon, initially the blue triangle. After the addition of the 
other triangles, the new polygon is formed, known as plastic pentagon. The spiral presents itself 
by connecting with an arc the two corners of the newly added triangle. 

 
Figure 1. Padovan spiral. (Source: Prepared by the authors.) 

Although this sequence is recursive, its terms can be found through the Q-matrix. According 
to studies carried out by Alves [2] for the Fibonacci sequence, the same idea will be followed so 
that an application is made for the Tridovan numbers. Thus, it is possible to study these new 
identities in addition to providing the perception of a constantly evolving notion of this 
sequence. 
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2 Preliminary 

As defined in the previous section, any element of the Padovan sequence is calculated based on 
the sum of the last two terms ignoring the one immediately before. Following the same idea, 
one can define the Tridovan sequence as the sum of the tree last terms ignoring the one 
immediately before. The addition of this new element makes the Tridovan Sequence a 4th 
degree recurrent linear sequence, and its properties and definitions will be presented in the 
following sessions. 

 

Definition 1. The Tridovan sequence numbers recursive relation for positive indices is given 
by: 

2 3 4 , 4n n n nT T T T n , 

where Tn is the n-th term of the sequence. The initial values of these numbers are given by: 
T0 = 0, T1 = 1, T2 = 0, T3 = 1. Thus, the list of terms in this sequence are (0, 1, 0, 1, 1, 2, 2, 4, 5, 
8, 11, 17, ...). 
 

Definition 2. The Tridovan sequence recurrence relation for negative indices is given by: 
T–n = T–n + 4 – T–n + 2 – T–n + 1  or T–n = T–n + 4 – T–n + 2 + T–n + 1, with T0 = 0, T1 = 1, T2 = 0, T3 = 1.  
 

From Definition 1, we can naturally describe the Tridovan sequence. We can also observe a 
process of extension of integer indices, since, in the previous definition, its values are indicated 
only for 4n . So let us see that for 3 1 0 13n T T T T  and, thus, we will have the 1 0T . 
Similarly, we see that for 2 0 1 22n T T T T  and, we will have the value 2 0T . For a 
smaller index, we have 1 1 2 31n T T T T , getting 3 1T . On a recurrent basis, we can 
further determine that 4 5 6 7 8 9 10 111, 0, 1, 0, 2, 2, 1, 3T T T T T T T T , etc. With 
this, from the previous values, we can systematize the description of the following sets with 
integers, as follows: 

2 1 1 2 4 3 2 1 0 1 2 3 4 3 2 1(..., , , , , ,... , , , , , , , , ,..., , , , ,...)n n n n n n n n nT T T T T T T T T T T T T T T T T T . 

When we want to determine any element for n  4, we use the relationship Tn = Tn – 2 + Tn – 3 + Tn – 4, 
however, the elements T0 = 0, T1 = 1, T2 = 0, T3 = 1 are fixed preliminarily.  

Now, noticing that 1 3 1 0T T T T  or yet 2 2 0 1T T T T  and also 3 1 1 2T T T T , constructing: 

(..., 3, 1, 2, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 2, 2, 4, ...) we can write the relation of 
recurrence to negative indexes as: 4 2 1n n n nT T T T  or 4 2 1n n n nT T T T . 

This arrangement shows a different understanding of the one shown at the beginning, since 
before the development of the terms were found by performing a “movement” from left to right, 
these terms can now be found with right-to-left “movement”) of the sequence. 
 

Definition 3. From the Tridovan sequence, we use the following notations with initial values  
T0 = 0, T1 = 1, T2 = 0, T3 = 1, and S0 = 0, S1 = 1, S2 = 1, S3 = 2, and: 

(a) Sum of positive terms: 0 1 2 1
0

...
n

n n n i
i

S T T T T T T , 

(b) Sum of positive even-numbered terms: 2 0 2 4 2 2 2 2
0

...
n

n n n i
i

S T T T T T T , 
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(c) Sum of positive odd-numbered terms: 2 1 1 3 5 2 1 2 1 2 1
0

...
n

n n n i
i

S T T T T T T , 

(d) Sum of negative terms: 0 1 2 1
0

...
n

n n n i
i

S T T T T T T ,  

(e) Sum of negative even-numbered terms: 2 0 2 4 2 2 2 2
0

...
n

n n n i
i

S T T T T T T ,  

(f) Sum of negative odd-numbered terms: 2 1 1 3 5 2 1 2 1
0

...
n

n n i
i

S T T T T T . 

Theorem 1. For any integer 2n the following identities are verified: 

(i) 1 3 1n n nS S T  ;  

(ii) 2 2 1 2 3 1n n nS S T ,  

(iii) 2 1 2 2 2 2n n nS S T . 

Proof. Consider the following set of expressions: 

4 2 1 0 4 2 1 0

5 3 2 1 5 3 2 1

6 4 3 2 6 4 3 2

1 1 2 3 1 1 2 3

2 1 2 2 1 2

3 1 1 3 1 1

n n n n n n n n

n n n n n n n n

n n n n n n n n

T T T T T T T T
T T T T T T T T
T T T T T T T T

T T T T T T T T
T T T T T T T T
T T T T T T T T

# #  

We can effectively cancel out the similar terms in the above equations to determine the 
following sum  

1

3 2 3
0 0

n n

n i i
i i

T T T T T , 

remembering that 2 30, 1T T  and, therefore, we see that  
1

1 3
0 0

1
n n

n n i i n
i i

S S T T T , 

or even more simplified as 1 3 1n n nS S T , hence we prove (i). 
In a similar way, this time for the even indices, we have the following set of equations: 

5 3 2 1 5 3 2 1

7 5 4 3 7 5 4 3

9 7 6 5 9 7 6 5

2 1 2 3 2 4 2 5 2 1 2 3 2 4 2 5

2 1 2 1 2 2 2 3 2 1 2 1 2 2 2 3

2 3 2 1 2 2 1 2 3

n n n n n n n n

n n n n n n n n

n n n n n

T T T T T T T T
T T T T T T T T
T T T T T T T T

T T T T T T T T
T T T T T T T T
T T T T T T

# #

2 1 2 2 1n n nT T

 

By means of cancelling out, we can obtain: 
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1

2 3 3 2 3 2 2 1
1 0

1
n n

n n i i
i i

T T T T T , 

assuming 3 1T , we find that 2 3 2 2 11n n nT S S , hence we prove (ii). 
We can also consider the following arrangement of the elements of the first list, eliminating 

the odd indexes as follows: 

4 2 1 0 4 2 1 0

6 4 3 2 6 4 3 2

8 6 5 4 8 6 5 4

10 8 7 6 10 8 7 6

2 2 2 2 3 2 4 2 2 2 2 3 2 4

2 2 2 2 1 2 2 2 2 2 2 1 2 2

n n n n n n n n

n n n n n n n n

T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T

T T T T T T T T
T T T T T T T T

# #
 

Thus, considering the corresponding eliminations, we must find that 
1 1

2 2 2 2 1 2
0 0

n n

n n n
i i

T T T T , 

therefore, we can write  
1 1

2 2 2 1 2 2 1 2 2
0 0

n n

n n n n n
i i

T T T S S , 

which proves item (iii).  

Finally, let us note that 2 1 0 44 1 1 1 1 0 3n S S S S . Using another value for 

n, one can get 3 2 1 55 1 1 2 1 1 5n S S S S . Thus, through the inductive method, 
we can see that: 

2 3 41n n n nS S S S . 

For n = n + 1, we have 

1 1 2 3 4 1 2 3 4 1 2 3(1 ) (1 ) ( )n n n n n n n n n n n n nS S T S S S T S S S T T T               

1 2 1 3 2 4 3 1 2 31 ( ) ( ) ( ) 1n n n n n n n n n nS S T S T S T S S S  
 

Theorem 2. For any integer 2n the following identities are verified: 

(i) 2 2 2 3 2 4n n nT S S  ;  

(ii) 2 3 4 5( )n n n nT T S S .  

Proof. Let us consider the equations: 

0 2 3 4

2 4 5 6

4 6 7 8

6 8 9 10

2 2 2 2 3 2 4n n n n

T T T T
T T T T
T T T T
T T T T

T T T T
#
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Performing some algebraic manipulations, we have: 

0 2 3 4

2 4 5 6

4 6 7 8

6 8 9 10

2 2 2 2 3 2 4n n n n

T T T T
T T T T
T T T T
T T T T

T T T T
#

. 

Adding and eliminating the corresponding terms, we find 

 
1 1 1 1

0 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 3 2 4
1 1 1 1

n n n n

n i i n i i n n n
i i i i

T T T T T T T T S S , 

which proves item (i). 
Then, we will use the following set of relations 

0 2 3 4

1 3 4 5

2 4 5 6

3 5 6 7

2 3 4

1 3 4 5

n n n n

n n n n

T T T T
T T T T
T T T T
T T T T

T T T T
T T T T

#
 

Through simple algebraic manipulations, we obtain: 

0 2 3 4

1 3 4 5

2 4 5 6

3 5 6 7

2 3 4

1 3 4 5

n n n n

n n n n

T T T T
T T T T
T T T T
T T T T

T T T T
T T T T

#
 

With this, after cancelling out, we can see that: 
4 5

0 1 2 3
3 4

n n

n n i i
i i

T T T T T T . 

Knowing that the values of  0 1 0T T , we have: 2 3 4 5( )n n n nT T S S , which proves 
item (ii).  
 

Definition 4. Given the arbitrary numbers G1, G2, G3, the Generalized Tridovan Sequence’s 
recurrence relation is defined as following: 

Gn = Gn – 1 + Gn – 2 + Gn – 3. 
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Theorem 3. For any integer 3n  will have the following general term 

3 4 1 1 2 2 3( ). . .n n n n nG T T G T G T G . 

It is worth noting that Tn represents the n-th term of the Tridovan Sequence (see Definition 1) 
and Gn represents the n-th term of the Generalized Tridovan Sequence (see Definition 4). 
Proof. Consider  

4 2 1 0 1 2 2 2 3 2 2 31. 1 . .G G G G G G G G T G T G . 

For 

5 1 2 3 1 2 3 1 2 1 4 2 3 31 1 1 ( ). . .G G G G G G G T T G T G T G  

Admitting the inductive step 4 3 1 1 2 2 3( ). . .n n n n nG T T G T G T G , we will add the following 

terms 2 1 2 3 4 1 1 2 2 3 1 2( ) ( ). . . ( )n n n n n n n n n nG G G G T T G T G T G G G . In the next step, 
we have: 

1 4 5 1 2 2 3 3

2 5 6 1 3 2 4 3

( ). . . ,
( ). . . .

n n n n n

n n n n n

G T T G T G T G
G T T G T G T G

 

And then replacing the terms, using the hypothesis: 

2 1 2

3 4 1 1 2 2 3 4 5 1

2 2 3 3 5 6 1 3 2 4 3

3 4 4 5 5 6 1 1 2 3 2 2 3 4 3

1 2

( )
( ). . . ( ).

. . ( ). . .
( ). ( ). ( ).
( ).

n n n n

n n n n n n

n n n n n n

n n n n n n n n n n n n

n n

G G G G
T T G T G T G T P G
T S T G T T G T G T G

T T T T T T G T T T G T T T G
T T 1 1 2 3( ). ( ).n nG T G T G

 

This completes the proof.  
                                                                      

Now consider the sequence behavior for negative indices. To do so, we can describe 
properties involving the following set:  

1 1 2 3 3 2 1 0 1 1 2( , , , , , , , , , , , , , , )n n n n nG G G G G G G G G G G G… … … . 

Therefore, from Definition 3, we will take:  

0 2 3 4 4 0 2 3 2 30n G G G G G G G G G G  

4 2 3 2 1 4 5 2 4 3( 1). ( 1). . ( ). .G G G T G T T G T G  

To another value: 

1 3 4 5 5 1 3 4 1 3 2 3 1 21 ( )n G G G G G G G G G G G G G G  

Or, we can write 

5 1 2 3 3 1 5 6 2 5 31. 1. 0. . ( ). .G G G G T G T T G T G . 

For one more value, we have: 

2 4 5 6 6 2 4 5 2 2 3 1 2

1 2 3

2 ( ) ( )
.

n G G G G G G G G G G G G G
G G G

 

Finally, we find: 

6 1 2 3

4 1 6 7 2 6 3

( 1). 1. 1.
. ( ). . .

G G G G
T G T T G T G

 

From the previous recursive procedure, we must find the following set 
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4 2 1 4 5 2 4 3

5 3 1 5 6 2 5 3

6 4 1 6 7 2 6 3

7 5 1 7 8 2 7 3

8 6 1 8 9 2 8 3

9 7 1 9 10 2 9 3

. ( ). .

. ( ). .

. ( ). .

. ( ). .

. ( ). .

. ( ). .

G T G T T G T G
G T G T T G T G
G T G T T G T G
G T G T T G T G
G T G T T G T G
G T G T T G T G
#

2 1 1 2 3. ( ). .n n n n nG T G T T G T G

. 

Now, from the previous relationships, we will formulate the following theorem. 
 

Theorem 4. For any integer 0n  we will have the following general term: 

2 1 1 2 3( )n n n n nG T G T T G T G . 

Proof. Some initial steps were indicated in the previous paragraphs, however, only to confirm 
our conjecture, we will perform the method of induction. 

2 1 1 2 3( )n n n n nG T G T T G T G  

and let us notice the following relation  

2 1 2n n n nG G G G  

and replacing the index n with –n, it gives 

2 1 2 2

2 1.
n n n n n

n n n

G G G G G
G G G

 

In this way, we will add nG  to the expression described above, resulting in:  

2 1 2 1

2 1 2 1 1 2 3

( ) ( )
( ) ( ) .

n n n n n n

n n n n n n

G G G G G G
G G T G T T G T G

 

On the left-hand side, we determine: 2 2 1n n n nG G G G  while, on the right-hand side, 

we will develop the expression, noting that 1 1 1 1 2 2 1 3( )n n n n nG T G T T G T G  

and 2 4 1 2 1 2 2 3( ) .n n n n nG T G T T G T G . 
Likewise, 

2 4 1 2 1 2 2 3

1 1 1 1 2 2 1 3

2 1 1 2 3

( )
( )

( )

n n n n n

n n n n n

n n n n n

G T G T T G T G
G T G T T G T G
G T G T T G T G

 

In the previous system, we evaluated:  

2 1 4 1 2 1( )n n n n n nG G G T T T G  

   2 1 1 1 2 2 2 1 3( ) ( )n n n n n n n n nT T T T T T G T T T G  

Finally, noting the following relationships 

4 1 2

2 2 1

3 1 1 2

,
,

,

n n n n

n n n n

n n n n

T T T T
T T T T
T T T T
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we can replace and find:  

2 2 1

1 2 3 2 2 1 3( ) ( )
n n n n

n n n n n n

G G G G
T G T T G T T T G

 

Thus, we determine that 2 1 2 3 2 2 3( )n n n n nG T G T T G T G .  

Corollary. For any integer, the following relations are valid: 

(i)  
4 3 1 2

1 2 3
4 2 1 3 2

n n n n n

i i i i i
i i i i i

G t t G t G t G , 

(ii)  
1 1

1 2 3
4 2 4 5 4

n n n n n

i i i i i
i i i i i

G t G t t G t G . 

Proof. Consider the following identities and then add them up, so that the terms G1, G2, G3 are 
highlighted. 

4 2 1 1 3 2 2 3

5 1 2 1 4 2 3 3

6 2 3 1 5 2 4 3

7 3 4 1 6 2 5 3

4 3 1 1 2 2 3

( )
( )
( )
( )

( ) .n n n n n

G T T G T G T G
G T T G T G T G
G T T G T G T G
G T T G T G T G

G T T G T G T G
#

 ,

4 2 1 4 5 2 4 3

5 3 1 5 6 2 5 3

6 4 1 6 7 2 6 3

7 5 1 7 8 2 7 3

2 1 1 2 3

( )
( )
( )
( )

( )n n n n n

G T G T T G T G
G T G T T G T G
G T G T T G T G
G T G T T G T G

G T G T T G T G
#

 

We will immediately have the identities foreseen in Theorems 3 and 4.  
 

According to the Padovan Q-matrix [11], we have the Tridovan Q-matrix, with T0 = 0, 
T1 = 1, T2 = 0, T3 = 1, 

0 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

Q . 

 

Theorem 5. Any term of the Tridovan sequence can be obtained by calculating the n-th power 
of Q, with 0 1 2 30, 1, 0, 1T T T T . This is represented by Qn. 

0 1 0 0 (1,1) (1, 2) (1,3) (1,4)
1 0 1 0 (2,1) (2,2) (2,3) (2,4)

, 3
1 0 0 1 (3,1) (3,2) (3,3) (3,4)
1 0 0 0 (4,1) (4,2) (4,3) (4,4)

n

n

Q Q Q Q
Q Q Q Q

Q n
Q Q Q Q
Q Q Q Q

 

In order to simplify the terms visualization of the previous matrix, the calculation of each of 
these is presented in the following lines: 
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1
( )

1
( 1)

1
( 2)

1
( 3)

1
( 1) ( 2) ( 3)

1
( 2) ( 3) ( 4)

1
( 3) ( 4) ( 5)

1
( 4) ( 5

(1,1)  ,

(1, 2)  ,

(1,3)  ,

(1, 4)  ,

(2,1)   ,

(2, 2)   ,

(2,3)  ,

(2, 4)   

n
n

n
n

n
n

n
n

n
n n n

n
n n n

n
n n n

n
n n

Q T

Q T

Q T

Q T

Q T T T

Q T T T

Q T T T

Q T T ) ( 6) ,nT

 

1
( 1) ( 2)

1
( 2) ( 3)

1
( 3) ( 4)

1
( 4) ( 5)

1
( 1)

1
( 2)

1
( 3)

1
( 4)

(3,1)   ,

(3, 2)   ,

(3,3)   ,

(3, 4)   ,

(4,1)  ,

(4, 2) ,

(4,3)  ,

(4, 4)  .

n
n n

n
n n

n
n n

n
n n

n
n

n
n

n
n

n
n

Q T T

Q T T

Q T T

Q T T

Q T

Q T

Q T

Q T

 

Proof. Using the principle of finite induction to prove the theorem. We have that for 1n n : 
1 .n nQ Q Q   

(1,1) (1,2) (1,3) (1,4) 0 1 0 0
(2,1) (2,2) (2,3) (2,4) 1 0 1 0

.
(3,1) (3,2) (3,3) (3,4) 1 0 0 1
(4,1) (4,2) (4,3) (4,4) 1 0 0 0

n

n

Q Q Q Q
Q Q Q Q

Q
Q Q Q Q
Q Q Q Q

 

It is assumed that each element of the Tridovan Q-matrix is defined as: 
1

( 1) ( 2) ( 3) ( 1)

1
( ) ( 1) 1

1
( 1) ( 1) 2

1
( 2) ( 1) 3

1
( 2) ( 3) ( 4) ( 3) ( 4) ( 5) ( 4) ( 5) ( 6)

(

(1,1)   ,

(1, 2) ,

(1,3) ,

(1, 4) ,

(2,1)    

n
n n n n

n
n n

n
n n

n
n n

n
n n n n n n n n n

n

Q T T T T

Q T T

Q T T

Q T T

Q T T T T T T T T T

T ) ( 1) ( 2) ( 1) 1 ( 1) 2 ( 1) 3

1
3( 1) 3( 2) ( 3) ( 1) 2 ( 1) 3 ( 1) 4

1
3( 2) ( 3) ( 4) ( 1) 3 ( 1) 4 ( 1) 5

,

(2, 2) =  ,

(2,3)   ,

n n n n n

n
n n n n n n

n
n n n n n n

T T T T T

Q T T T T T T

Q T T T T T T

  

1
( 3) ( 4) 3( 5) 3( 1) 4 3( 1) 5 3( 1) 6

1
( 2) ( 3) ( 3) ( 4) ( 4) ( 5) ( ) ( 1) ( 1) 1 ( 1) 2

1
( 1) ( 2) ( 1) 2 ( 1) 3

1

(2, 4) =   ,

(3,1)    ,

(3, 2)  ,

n
n n n n n n

n
n n n n n n n n n n

n
n n n n

n

Q T T T T T T

Q T T T T T T T T T T

Q T T T T

Q ( 2) ( 3) ( 1) 3 ( 1) 4

1
( 3) ( 4) ( 1) 4 ( 1) 5

(3,3)  ,

(3, 4)  ,
n n n n

n
n n n n

T T T T

Q T T T T

  

1
( 2) ( 3) 3( 4) 3( ) 3( 1) 1

1
( 1) ( 1) 2

1
( 2) ( 1) 3

(4,1)  ,

(4, 2)  ,

(4,3)  ,

n
n n n n n

n
n n

n
n n

Q T T T T T

Q T T

Q T T

  

1
( 3) ( 1) 4(4, 4)  n
n nQ T T .  

 

According to Definition 5, we can observe the following matrices: 
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6 5 4 3

5 4 3 4 3 2 3 2 1 2 1 06

5 4 4 3 3 2 2 1

5 4 3 2

4 2 2 1
5 4 2 2
4 3 2 1
2 2 1 1

T T T T
T T T T T T T T T T T T

Q
T T T T T T T T

T T T T

, 

7 6 5 4

6 5 4 5 4 3 4 3 2 3 2 17

6 5 5 4 4 3 3 2

6 5 4 3

5 4 2 2
8 5 4 2

.
6 4 3 2
4 2 2 1

T T T T
T T T T T T T T T T T T

Q
T T T P T T T T

T T T T

 

Similarly, we observe:  

1 2 3 4

2 3 4 3 4 5 4 5 6 5 6 71

2 3 3 4 4 5 5 6

2 3 4 5

0 0 0 1
1 0 0 0

,
0 1 0 1
0 0 1 1

T T T T
T T T T T T T T T T T T

Q
T T T T T T T T

T T T T

 

2 3 4 5

3 4 5 4 5 6 5 6 7 6 7 82

3 4 4 5 5 6 6 7

3 4 5 6

0 0 1 1
0 0 0 1

.
1 0 1 1
0 1 1 0

T T T T
T T T T T T T T T T T T

Q
T T T T T T T T

T T T T

 

 

Theorem 6. The determinant calculation of the Tridovan Q-matrix powered to the n-th power 
is always equal to the number 1, namely, det 1nQ . 
Proof. 
 det 1,Q   det( ) det( ) 1n nQ Q .  
 

Theorem 7. For any natural numbers m and n, 3 m n , we have the following relation: 

1 1 2 3 2 1 2 3 1. .( ) .( ) .n m n m m n m n m n m m n m n m m n mT T T T T T T T T T T T . 
Proof.  

.n m n mQ Q Q  

1 2 3

1 2 3 2 3 4 3 4 5 4 5 6

1 2 2 3 3 4 4 5

1 2 3 4

1 2 3

1 2 3 2 3 4 3 4 5 4

n n n n

n n n n n n n n n n n nn

n n n n n n n n

n n n n

m m m m

m m m m m m m m m m

T T T T
T T T T T T T T T T T T

Q
T T T T T T T T

T T T T

T T T T
T T T T T T T T T T T 5 6

1 2 2 3 3 4 4 5

1 2 3 4

1 2 3

1 2 3 2 3 4 3 4 5 4 5 6

1 2 2 3

.

m m

m m m m m m m m

m m m m

n m n m n m n m

n m n m n m n m n m n m n m n m m n m n m n m

n m n m n m n m

T
T T T T T T T T

T T T T

T T T T
T T T T T T T T T T T T

T T T T T 3 4 4 5

1 2 3 4

n m n m n m n m

n m n m n m n m

T T T
T T T T
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1 1 2 3 2 1 2 3 1. .( ) .( ) .n m n m m n m n m n m m n m n m m n mT T T T T T T T T T T T . 
 

If  m = 3, 

2

3 3 2 4 5 6 1 4 5 0 4. .( ) .( ) .
n

n n n n n n n n
P

T T T T T T T T T T T T�����������  

3 3 2 2 1 4 5 0 4. . .( ) .n n n n n nT T T T T T T T T T        0 1 2 31; 0; 1T T T T∵  

2 3 4n n n nT T T T .   

3 Conclusion 

Based on the studies carried out on this Tribonacci Sequence, initially studied by Feinberg [5], 
and then continued by Koshy [7], we can investigate and establish new identities for the 
Tridovan numbers. 

In a similar way as for the Fibonacci extensions [2, 3], investigative and historical studies of 
this sequence are made so that it is possible to obtain the Tridovan Sequence, and thus discover 
new properties related to it. Based on the previous considerations, we emphasize that this work 
presents sufficient elements to characterize the general objective scope of the research. The new 
identities of the Tridovan Sequence, its generalization and the behavior of the terms for the 
positive and negative indices were presented. Besides that, it was still possible to obtain the 
Tridovan Q-matrix, so that it is possible to find the terms of the sequence without the use of the 
recurrence formula [12]. 

We can conclude that these Padovan numbers are in initial study and discoveries of relations 
and properties and more research and studies on the subject are required. 
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