Pentti Haukkanen
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 2, Pages 1–7
DOI: 10.7546/nntdm.2019.25.2.1-7
Full paper (PDF, 150 Kb)
Details
Authors and affiliations
Pentti Haukkanen
Faculty of Information Technology and Communication Sciences
FI-33014 Tampere University, Finland
Abstract
Let 0 ≠ S ⊆ ℙ. The arithmetic subderivative of n with respect to S is defined as
DS(n) = n ∑p∈S νp(n)/p,
where n = Πp ∈ ℙ pνp(n) ∈ ℤ+. In particular, Dℙ(n) = D(n) is the arithmetic derivative of n, and D{p}(n) = Dp(n) is the arithmetic partial derivative of n with respect to p ∈ ℙ.
For each p ∈ S, let fp be an arithmetic function. We define generalized arithmetic subderivative of n with respect to S as
DSf(n) = n ∑p∈S fp(n)/p,
where f stands for the collection (fp)p∈S of arithmetic functions. In this paper, we examine for which kind of functions fp the generalized arithmetic subderivative is obeys the Leibniz-rule, preserves addition, “usual multiplication” and “scalar multiplication”.
Keywords
- Arithmetic derivative
- Arithmetic partial derivative
- Arithmetic subderivative
- Arithmetic function
- Completely additive function
- Completely multiplicative function
- Leibniz rule
2010 Mathematics Subject Classification
- 11A25
- 11A41
References
- Apostol, T. M. (1976). Introduction to Analytic Number Theory, Springer-Verlag, New York.
- Atanassov, K. T. (1987). New integer functions, related to φ and σ functions, Bull. Number Theory Related Topics 11 (1–3), 3–26.
- Barbeau, E. J. (1961). Remarks on an arithmetic derivative, Canad. Math. Bull. 4 (2), 117– 122.
- Haukkanen, P. (2012). Extensions of the class of multiplicative functions, East–West J. Math. 14 (2), 101–113.
- Haukkanen, P., Merikoski, J. K., Mattila, M., & Tossavainen, T. (2017). The arithmetic Jacobian matrix and determinant, J. Integer Seq. 20, Article 17.9.2.
- Haukkanen, P., Merikoski, J. K., & Tossavainen, T. (2016). On arithmetic partial differential equations, J. Integer Seq. 19, Article 16.8.6.
- Haukkanen, P., Merikoski, J. K., & Tossavainen, T. (2018). The arithmetic derivative and Leibniz-additive functions. Notes on Number Theory and Discrete Mathematics, 24 (3), 68–76.
- Kovic, J. (2012). The arithmetic derivative and antiderivative, J. Integer Seq. 15, Article 12.3.8.
- McCarthy, P. J. (1986). Introduction to Arithmetical Functions, Springer-Verlag, New York.
- Merikoski, J. K., Haukkanen, P., & Tossavainen, T. (2019). Arithmetic subderivatives and Leibniz-additive functions, Ann. Math. Inform., accepted.
- Sándor, J. & Crstici, B. (2004). Handbook of Number Theory II, Kluwer Academic, Dordrecht.
- Sivaramakrishnan, R. (1989). Classical Theory of Arithmetic Functions, Monographs and Textbooks in Pure and Applied Mathematics 126, Marcel Dekker.
- Ufnarovski, V. & Ahlander, B. (2003). How to differentiate a number, J. Integer Seq. 6, Article 03.3.4.
Related papers
Cite this paper
Haukkanen, P. (2019). Generalized arithmetic subderivative. Notes on Number Theory and Discrete Mathematics, 25(2), 1-7, DOI: 10.7546/nntdm.2019.25.2.1-7.