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Abstract: Let ∅ 6= S ⊆ P. The arithmetic subderivative of n with respect to S is defined
as

DS(n) = n
∑
p∈S

νp(n)

p
,

where n =
∏

p∈P p
νp(n) ∈ Z+. In particular, DP(n) = D(n) is the arithmetic derivative of n, and

D{p}(n) = Dp(n) is the arithmetic partial derivative of n with respect to p ∈ P.
For each p ∈ S, let fp be an arithmetic function. We define generalized arithmetic subderiva-

tive of n with respect to S as

Df
S(n) = n

∑
p∈S

fp(n)

p
,

where f stands for the collection (fp)p∈S of arithmetic functions. In this paper, we examine for
which kind of functions fp the generalized arithmetic subderivative is obeys the Leibniz-rule,
preserves addition, “usual multiplication” and “scalar multiplication”.
Keywords: Arithmetic derivative, Arithmetic partial derivative, Arithmetic subderivative, Arith-
metic function, Completely additive function, Completely multiplicative function, Leibniz rule.
2010 Mathematics Subject Classification: 11A25, 11A41.

1 Introduction

For each n ∈ Z+ there is a unique sequence (νp(n))p∈P of nonnegative integers (with only finitely
many nonzero terms) such that

n =
∏
p∈P

pνp(n). (1)
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Let ∅ 6= S ⊆ P. The arithmetic subderivative of n with respect to S is defined [10] as

DS(n) = n
∑
p∈S

νp(n)

p
.

In particular, DP(n) = D(n) is the arithmetic derivative of n, defined by Barbeau [3]. See
also, e.g., [2, 13]. Another well-known special case is D{p}(n) = Dp(n), the arithmetic partial
derivative of n with respect to p ∈ P, defined by Kovič [8]. See also, e.g., [5, 6]. Various
properties of the arithmetic derivative and its analogs have been investigated in the literature;
for example, connections to classical arithmetic functions, inequalities and arithmetic differential
equations and integrals, see e.g. [2, 3, 6, 8, 13].

We build a generalization of the arithmetic subderivative DS(n) replacing νp(n) with any
arithmetic function. So, for each p ∈ S, let fp be an arithmetic function. Assume that for all n,
only a finite number of the values fp(n) with p ∈ S is nonzero. This assures that the sum(∑

p∈S

fp
p

)
(n) =

∑
p∈S

fp(n)

p

is finite and thus defines an arithmetic function. For example, for fp = νp this condition holds.
We define generalized arithmetic subderivative of n with respect to S as

Df
S(n) = n

∑
p∈S

fp(n)

p
,

where f stands for the collection (fp)p∈S of arithmetic functions. We refer to the function Df
P

as generalized arithmetic derivative, and to the function Df
{p} = Df

p as generalized arithmetic

partial derivative. For fp = νp, D
f
S = DS and, in particular, Df

P = D and Df
{p} = Dp. The

concept of a generalized arithmetic subderivative is new in mathematical literature.
The motivation for this definition is to investigate for which kind of functions fp the gen-

eralized arithmetic subderivative is Leibniz-additive (obeys the Leibniz-rule), linear (preserves
addition and “scalar multiplication”) and completely multiplicative (preserves “usual multiplica-
tion”).

The fundamental property of arithmetic subderivative (including arithmetic derivative and
arithmetic partial derivative) is that it obeys the Leibniz rule. The purpose of this note is to ex-
plain in terms of the function fp(n) why it is not linear and does not preserve multiplication in
the usual sense. We carry out this with the aid of basic classes of arithmetic functions. It appears
that the completely additivity of the functions fp(n) implies the Leibniz-additivity of generalized
arithmetic subderivative Df

S . (Note that the function fp = νp really is completely additive.) If the
functions fp(n) are constant functions, then generalized arithmetic subderivative Df

S is linear. In
the case of generalized arithmetic partial derivative Df

p the above two conditions are even neces-
sary and sufficient conditions. Generalized arithmetic subderivative Df

S preserves multiplication
if and only if the function

∑
p∈S

fp
p

is completely multiplicative. For generalized arithmetic partial
derivativeDf

p this means that the function fp(n) is completely quasimultiplicative with fp(1) = p.

2



2 Preliminaries

We here review the basic concepts on arithmetic functions applied in this paper.
An arithmetic function f is said to be additive if f(mn) = f(m) + f(n), whenever

gcd(m,n) = 1, and an arithmetic function f is said to be multiplicative if f(1) = 1 and
f(mn) = f(m)f(n), whenever gcd(m,n) = 1. An arithmetic function f is said to be com-
pletely additive if f(mn) = f(m) + f(n) for all positive integers m and n, and an arithmetic
function f is said to be completely multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all
positive integers m and n. See, e.g., [1, 9, 11]

An arithmetic function f is said to be quasimultiplicative if f(1) 6= 0 and there exists c 6= 0

such that c f(mn) = f(m)f(n), whenever gcd(m,n) = 1. Clearly, c = f(1). We define that an
arithmetic function f is completely quasimultiplicative if f(1) 6= 0 and there exists c 6= 0 such
that c f(mn) = f(m)f(n) for all m,n. It is easy to see that f is quasimultiplicative if and only
if f/c is multiplicative for some c 6= 0, and f is completely quasimultiplicative if and only if f/c
is completely multiplicative for some c 6= 0. See, e.g., [4, 12].

An arithmetic function f is said to be Leibniz-additive if there is a completely multiplicative
function hf such that

f(mn) = f(m)hf (n) + f(n)hf (m) (2)

for all positive integers m and n. The arithmetic derivative D, the arithmetic subderivative DS

and the arithmetic partial derivative Dp are Leibniz-additive with hD = hDS
= hDp = Id, where

Id(n) = n for all n. See [7].

3 Properties of generalized arithmetic subderivative

Theorem 3.1. The generalized arithmetic subderivative Df
S is Leibniz-additive with hDf

S
= Id if

and only if
∑

p∈S
fp
p

is completely additive.

Proof. The function Df
S is Leibniz-additive with hDf

S
= Id if and only if for all m and n,

Df
S(mn) = Df

S(m)n+Df
S(n)m.

In other words,

mn
∑
p∈S

fp(mn)

p
= m

∑
p∈S

fp(m)

p
n+ n

∑
p∈S

fp(n)

p
m,

which is equivalent to ∑
p∈S

fp(mn)

p
=
∑
p∈S

fp(m)

p
+
∑
p∈S

fp(n)

p
,

or, (∑
p∈S

fp
p

)
(mn) =

(∑
p∈S

fp
p

)
(m) +

(∑
p∈S

fp
p

)
(n).

which means that
∑

p∈S
fp
p

is completely additive. This completes the proof.
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Remark 3.1. Theorem 3.1 could also be proved using [7, Theorem 2.1].

Corollary 3.1. Given p ∈ P, the generalized arithmetic partial derivative Df
p is Leibniz-additive

with hDf
p
= Id if and only if fp is completely additive.

Proof. According to Theorem 3.1 the function Df
p is Leibniz-additive with hDf

p
= Id if and only

if fp
p

is completely additive. But this holds if and only if fp is completely additive.

Corollary 3.2. If fp is completely additive for all p ∈ S, then the generalized arithmetic sub-
derivative Df

S is Leibniz-additive with hDf
S
= Id.

Proof. Assume that fp is completely additive for all p ∈ S. Then, for all m and n,(∑
p∈S

fp
p

)
(mn) =

∑
p∈S

fp(mn)

p
=
∑
p∈S

(
fp(m)

p
+
fp(n)

p

)

=
∑
p∈S

fp(m)

p
+
∑
p∈S

fp(n)

p
=

(∑
p∈S

fp
p

)
(m) +

(∑
p∈S

fp
p

)
(n).

Thus
∑

p∈S
fp
p

is completely additive, and therefore, on the basis of Theorem 3.1, the functionDf
p

is Leibniz-additive with hDf
p
= Id.

Theorem 3.2. The generalized arithmetic subderivativeDf
S preserves addition, i.e., for allm and

n,
Df
S(m+ n) = Df

S(m) +Df
S(n)

if and only if
∑

p∈S
fp
p

is a constant function.

Proof. Assume that
∑

p∈S
fp
p

is a constant function, say,
∑

p∈S
fp(n)

p
= c for all n. Then, for all

m and n,
Df
S(m+ n) = (m+ n)c = mc+ nc = Df

S(m) +Df
S(n).

Conversely, assume that Df
S(m+ n) = Df

S(m) +Df
S(n) for all m and n. Then

(m+ n)
∑
p∈S

fp(m+ n)

p
= m

∑
p∈S

fp(m)

p
+ n

∑
p∈S

fp(n)

p
.

Now, by induction, we can show that
∑

p∈S
fp
p

is a constant function.

Corollary 3.3. Given p ∈ P, the generalized arithmetic partial derivative Df
p preserves addition

if and only if fp is a constant function.

Proof. According to Theorem 3.2 the functionDf
p preserves addition if and only if fp

p
is a constant

function, say c. This means that fp is the constant function cp.

Corollary 3.4. If fp is a constant function for all p ∈ S, then the generalized arithmetic sub-
derivative Df

S preserves addition.
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Proof. Assume that fp is a constant function for all p ∈ S, say, fp(n) = cp for all n. Then∑
p∈S

fp(n)

p
=
∑
p∈S

cp
p

for all n. Thus
∑

p∈S
fp(n)

p
is a constant, and therefore, on the basis of Theorem 3.2, Df

S preserves
addition.

Theorem 3.3. The generalized arithmetic subderivative Df
S preserves “scalar multiplication”,

i.e., for all a and n,
Df
S(an) = aDf

S(n)

if and only if
∑

p∈S
fp
p

is a constant function.

Proof. Assume that
∑

p∈S
fp
p

is a constant function, say,
∑

p∈S
fp(n)

p
= c for all n. Then

Df
S(an) = anc = aDf

S(n).

Conversely, assume that Df
S(an) = aDf

S(n) for all a and n. Then

an
∑
p∈S

fp(an)

p
= an

∑
p∈S

fp(n)

p
,

or ∑
p∈S

fp(an)

p
=
∑
p∈S

fp(n)

p
.

Taking n = 1 we see that
∑

p∈S
fp
p

is a constant function.

Corollary 3.5. Given p ∈ P, for all a and n,

Df
p (an) = aDf

p (n)

if and only if fp is a constant function.

Proof of Corollary 3.5 is similar to that of Corollary 3.3.

Corollary 3.6. If fp is a constant function for all p ∈ S, then

Df
S(an) = aDf

S(n)

for all a and n.

Proof of Corollary 3.6 is similar to that of Corollary 3.4.

Remark 3.2. The only arithmetic function
∑

p∈S
fp
p

that satisfies the conditions of Theorems 3.1,
3.2 and 3.3 simultaneously is the function that is identically zero.

Theorem 3.4. The generalized arithmetic subderivative Df
S is completely multiplicative (i.e.,

preserves “usual multiplication”) if and only if
∑

p∈S
fp
p

is completely multiplicative.
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Proof. We first note that Df
S(1) =

∑
p∈S

fp(1)

p
. Assume now that this value equals 1. Then Df

p is
completely multiplicative if and only if for all m and n,

Df
S(mn) = Df

S(m)Df
S(n).

In other words,

mn
∑
p∈S

fp(mn)

p
= m

∑
p∈S

fp(m)

p
n
∑
p∈S

fp(n)

p
,

which is equivalent to ∑
p∈S

fp(mn)

p
=
∑
p∈S

fp(m)

p

∑
p∈S

fp(n)

p
.

This means that
∑

p∈S
fp
p

is completely multiplicative. This completes the proof.

Corollary 3.7. Given p ∈ P, the generalized arithmetic partial derivative Df
p is completely

multiplicative if and only if fp is completely quasimultiplicative with f(1) = p.

Proof. According to Theorem 3.4 the function Df
p is completely multiplicative if and only if fp

p

is completely multiplicative. This means that fp is completely quasimultiplicative with fp(1) =
p.

Remark 3.3. There is no arithmetic function
∑

p∈S
fp
p

that satisfies the conditions of Theorems

3.1 and 3.4 simultaneously. In fact, if
∑

p∈S
fp
p

is completely additive, then
∑

p∈S
fp(1)

p
= 0, and

if it is completely multiplicative, then
∑

p∈S
fp(1)

p
= 1. The only arithmetic function

∑
p∈S

fp
p

that satisfies the conditions of Theorems 3.2, 3.3 and 3.4 simultaneously is the function that is
identically 1.

We next present “co-prime” analogs of Theorems 3.1 – 3.4. Proofs are similar to those of
Theorems 3.1 – 3.4.

Theorem 3.5. The generalized arithmetic subderivative Df
S satisfies Leibniz-rule (2) with hDf

p
=

Id for all m and n with gcd(m,n) = 1 if and only if
∑

p∈S
fp
p

is additive.

Theorem 3.6. We have
Df
S(m+ n) = Df

S(m) +Df
S(n)

for all m and n with gcd(m,n) = 1 if and only if
∑

p∈S
fp
p

is a constant function.

Theorem 3.7. We have
Df
S(an) = aDf

S(n)

for all a and n with gcd(a, n) = 1 if and only if
∑

p∈S
fp
p

is a constant function.

Theorem 3.8. The generalized arithmetic subderivativeDf
S is multiplicative if and only if

∑
p∈S

fp
p

is multiplicative.
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