József Sándor

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 1, Pages 32—35

DOI: 10.7546/nntdm.2019.25.1.32-35

**Download full paper: PDF, 157 Kb**

## Details

### Authors and affiliations

József Sándor

*Department of Mathematics, Babes-Bolyai University
Str. Kogalniceanu 1, 400084 Cluj-Napoca, Romania*

*
*

### Abstract

In this paper, we give three identities involving the Lucas sequences of the first kind and of the second kind in order to obtain infinite families of solutions to some Diophantine equations. Some of these families are new and the others are larger than those known until now.

### Keywords

- Euler’s totient
- Primes
- Fermat’s little theorem
- Quadratic residues

### 2010 Mathematics Subject Classification

- 11A07
- 11A25
- 11N37

### References

- Hardy, G. H. & Wright, E. N. (1964). An Introduction to the Theory of Numbers, Oxford University Press.
- Sándor, J. (1989). On the composition of some arithmetic functions, I. Studia Univ. Babeş-Bolyai, Math., 34, 7–14.
- Sándor, J. (2005). On the composition of some arithmetic functions, II. J. Ineq. Pure Appl. Math., 6 (2), Article No. 73.
- Sándor, J. (2005). On the composition of some arithmetic functions, III. (unpublished manuscript).
- Sándor, J. & Crstici, B. (2004). Handbook of Number Theory II, Springer.

## Related papers

## Cite this paper

APASándor, J. (2019). A note on Euler’s totient function. Notes on Number Theory and Discrete Mathematics, 25(1), 32-35, doi: 10.7546/nntdm.2019.25.1.32-35.

ChicagoSándor, József. “A Note on Euler’s Totient Function.” Notes on Number Theory and Discrete Mathematics 25, no. 1 (2019): 32-35, doi: 10.7546/nntdm.2019.25.1.32-35.

MLASándor, József. “A Note on Euler’s Totient Function.” Notes on Number Theory and Discrete Mathematics 25.1 (2019): 32-35. Print, doi: 10.7546/nntdm.2019.25.1.32-35.