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Abstract: We prove by elementary arguments that the inequalities ϕ(2k + 1) > 2k−1 and
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1 Introduction

The Euler totient function ϕ is defined as follows. For n > 1, put ϕ(n) for the number of all
x ≤ n such that (x, n) = 1. This function plays an important role in many fields of mathematics
(see e.g. [5]). Put ϕ(1) = 1 and for n > 1, let n = pα1

1 . . . pαr
r be the prime factorization of n.

Then it is well-known that holds the following formula:

ϕ(n) = pα1
1 . . . pαr

r

(
1− 1

p1

)
. . .

(
1− 1

pr

)
, (1)

or in another notation,
ϕ(n)

n
=
∏
q|n

(
1− 1

q

)
, (2)

where q runs through all the prime divisors of n (see e.g. [1]). There exist many classical inequal-
ities involving the function ϕ. The most known one is

ϕ(n) ≤ n− 1 for all n ≥ 2 (3)

with equality only for n = prime. Also (see [1, 5]),

ϕ(mn) ≤ mϕ(n), m, n ≥ 1. (4)
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As a corollary to (4) we get the following:
If a|b, (i.e. a is a divisor of b), then

ϕ(b)

b
≤ ϕ(a)

a
. (5)

Indeed, let b = aq. Then, by (4) we can write ϕ(b) = ϕ(aq) ≤ qϕ(a) =
b

a
ϕ(a), implying

relation (5).
By studying the properties of certain “composite functions” ([4], see also [2, 3]) we have

encountered recently the following inequality:

ϕ(2k + 1) > 2k−1, k ≥ 1. (6)

By checking this relation for some values (say k ≤ 10), we get that (6) is true. But more
surprising was that, by using a computer (e.g. Maple system), we find that relation (6) holds true
also for all k ≤ 137(!).

By taking into account the complexity of numbers of type 2k+1, probably, it would be difficult
to get a counterexample to (6), by using direct computations.

Our aim in what follows is to show that (6) holds true for infinitely many k, but it is not true
for other infinitely many values of k.

2 Main results

Theorem 1.
1) For sufficiently large prime numbers p (i.e. p ≥ p0) one has

ϕ(2p + 1) > 2p−1. (7)

2) There are infinitely many numbers k such that

ϕ(2k + 1) < 2k−1. (8)

Proof. Let p1 < p2 < · · · < pn < . . . be the set of all primes of the form p ≡ 3 (mod 8). By
Fermat’s little theorem one has

p|2p−1 − 1 = (2(p−1)/2 − 1)(2(p−1)/2 + 1).

Remark that p cannot divide the first paranthese, since in that case,
p− 1

2
being odd, we

would get that 2 is a quadratic residue mod p. It is well-known (see e.g. [1]) that this is not true
for primes of the form p ≡ 3 (mod 8). Therefore

p|2(p−1)/2 + 1. (9)

Let us now define

k0 = lcm

[
p1 − 1

2
, . . . ,

pm − 1

2

]
, (10)
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(where lcm denotes the least common multiple). Then as k0 is odd, 2k0 + 1 = 2
M(p1−1)

2 + 1 is
divisible by 2(p1−1)/2+1, which by (9) is divisible by p1. The same can be repeated for all primes
pi (i = 1,m). Thus

p1p2 . . . pm|2k0 + 1. (11)

Now, by inequality (5) one gets

ϕ(2k0 + 1)

2k0 + 1
≤ ϕ(p1 . . . pm)

p1 . . . pm
=

(
1− 1

p1

)
. . .

(
1− 1

pm

)
, (12)

by (2).
It is well-known that lim

m→∞

(
1− 1

p1

)
. . .
(
1− 1

pm

)
= 0 (which, essentially follows from the

divergence of the series
∑
m≥1

1

pm
); therefore for all ε > 0 one can find m ≥ m0 such that(

1− 1

p1

)
. . .

(
1− 1

pm

)
< ε. For ε =

1

4
, we get from (12) that

ϕ(2k0 + 1) < (2k0 + 1) · 1
4
< 2k0−1, as 2k0 > 1.

Put now k = K · k0, where K is an arbitrary odd number. Then it is immediate from above
that, k also satisfies inequality (8). This finishes the proof of Part 2).

Now, from the proof of Part 1) we need an auxiliary result:

Lemma 1.
lim
p→∞
p prime

ϕ(2p + 1)

2p + 1
=

2

3
. (13)

Proof. If p is an odd prime, then 2p + 1 is divisible by 3, by a well-known divisibility criterion.
By (5) we get

ϕ(2p + 1)

2p + 1
≥ 2

3
for all p ≥ 3. (14)

On the other hand, all other prime factors of Mp = 2p+1 are q ≡ 1 (mod p) (this follows by
Fermat’s little theorem), and the number of such prime is

O(logMp/ log logMp)

(see the results for ω(n) = number of distinct prime divisors of n, [1, 5]). Clearly,

O(logMp/ log logMp) = O(p/ log p). (15)

Therefore, by relation (3) one has

ϕ(Mp)

Mp

≥ 2

3

(
1− 1

2p+ 1

)O(p/ log p)

, (16)

since q = 2s+ 1 ≥ 2p+ 1 (s = 1 is impossible, since then q = even). But

lim
p→∞

(
1− 1

2p+ 1

)O(p/ log p)

= 1,
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and relation (14) combined with (16) gives (13).
Now for the proof of (7) remark that, by (13), for all ε > 0 there is p0 ∈ N such that for

p ≥ p0 one has

ϕ(2p + 1) >

(
2

3
− ε

)
(2p + 1).

Put ε =
1

6
. Then

2

3
−ε =

1

2
, and

1

2
(2p+1) = 2p−1+

1

2
> 2p−1, so finally, relation (7) follows

for all sufficiently large primes p.

3 Remarks

By more complicated arguments, it can be shown that (8) holds true for a positive proportion of
values of k ([4], see also [2, 3]).
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