Anthony G. Shannon, Ömür Deveci and Özgűr Erdağ

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 1, Pages 193—198

DOI: 10.7546/nntdm.2019.25.1.193-198

**Download full paper: PDF, 82 Kb**

## Details

### Authors and affiliations

Anthony G. Shannon

*Fellow, Warrane College, The University of New South Wales
Kensington NSW 2033, Australia
*

Ömür Deveci

*Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100 Kars, Turkey
*

Özgűr Erdağ

*Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100 Kars, Turkey
*

### Abstract

Relationships, in terms of equations and congruences, are developed between the Bernoulli numbers and arbitrary order generalizations of the ordinary Fibonacci and Lucas numbers. Some of these are direct connections and others are analogous similarities.

### Keywords

- Fibonacci polynomials
- Difference operators
- Generalized Fibonacci and Lucas numbers
- Bernoulli numbers and polynomials

### 2010 Mathematics Subject Classification

- 11B39
- 11B50
- 11B68

### References

- Carlitz, L. (1965). Recurrences for the Bernoulli and Euler numbers. Mathematische Nachrichten. 2 (3–4), 151–160.
- Hartree, D. R. (1958). Numerical Analysis. Oxford: Clarendon Press.
- Hoggatt, V. E. Jr, & Bicknell, M. (1973). Roots of Fibonacci polynomials. The Fibonacci Quarterly. 11 (3), 271–274.
- Hoggatt, V. E. Jr, & Long, C. T. (1974). Divisibility properties of generalized Fibonacci Polynomials. The Fibonacci Quarterly. 12 (2), 113–120.
- Knuth, D. E. (1992). Two notes on notation, American Mathematical Monthly, 99 (5), 403–422.
- Shannon, A. G. (1975). Fibonacci analogs of the classical polynomials. Mathematics Magazine. 48 (3), 123–130.
- Sun, Z.-W. (2003). General congruences for Bernoulli polynomials. Discrete Mathematics. 261 (1–3), 253–276.

## Related papers

## Cite this paper

APAShannon, A. G., Deveci, O. & Erdağ, Ö. (2019). Generalized Fibonacci numbers and Bernoulli polynomials. Notes on Number Theory and Discrete Mathematics, 25(1), 193-198, doi: 10.7546/nntdm.2019.25.1.193-198.

ChicagoShannon, Anthony G. and Ömür Deveci and Özgűr Erdağ. “Generalized Fibonacci Numbers and Bernoulli Polynomials.” Notes on Number Theory and Discrete Mathematics 25, no. 1 (2019): 193-198, doi: 10.7546/nntdm.2019.25.1.193-198.

MLAShannon, Anthony G. and Ömür Deveci and Özgűr Erdağ. “Generalized Fibonacci Numbers and Bernoulli Polynomials.” Notes on Number Theory and Discrete Mathematics 25.1 (2019): 193-198. Print, doi: 10.7546/nntdm.2019.25.1.193-198.