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1 Introduction  

A generating function for Fibonacci polynomials{ })(xun  [3, 4] was demonstrated in [3] to be 
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and 
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where the jP  are arbitrary integers and the jα  are the distinct roots of the auxiliary equation 
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From (1.1) it follows that  
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which are comparable with similar results for the Bernoulli polynomials such as 
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Here we prove a more direct connection between these generalized Fibonacci numbers and the 

Bernoulli numbers, namely 
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in which the difference operator Δ [2] is defined as 

).()1()( xuxuxu nnn −+=∆  

2 Proof of Fibonacci–Bernoulli connection 

The proof of (1.5): 
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and we also have that 
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from which we get the required result on equating coefficients of tn when x = 0. 

3 Fibonacci and Bernoulli congruences  

The Appell set criterion was established in [6], namely, 
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from which we can obtain 
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which parallels the known result [1]  
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Just as there are many Bernoulli polynomial congruences [7], so there are too for the Fibonacci 

polynomials. For instance, we can also show that 

 ( )( ) ).(mod)()( mxuxuxu
t

mntnn ≡
+  (3.1) 

To prove this, we use induction on t and m. 

When t = 0, it is obvious for all n. 

When t = 1 and n = 1, we note that 
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in which we have used the falling factorial coefficient
j

m  [5], and  
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which we use below. Thus, 
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Assume the result is true for n = 2, 3, …, s; that is   

).(mod)()()( mxuxuxu nmnm ≡+  

Then 
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so when t = 1, for all n  

)(mod)()()( mxuxuxu mnmn ≡+  

and when t = 2, for all n, 
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Assume the result holds for t = 3, 4, …, k   
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To continue the Bernoulli connections, it follows that for n = 0, 1, 2,… 
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in which the Bj(n) are also polynomials depending on n with integral coefficients modulo m.  
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We then have the following result. Let the monic polynomial elements of the set 

{ })(),...,(),( 10 xuxuxu n  

with coefficients modulo m such that 
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where As (s = 0, 1, 2, …, n) are integral modulo m. Then, 
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Proof: 
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so that 
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which implies that 
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since if us(x) is a polynomial with integral coefficients, the statement )(mod0)( mxu s ≡ means 

that each coefficient of us(x) is divisible by m. Thus, m | As, s = 0, 1, 2, …, n, because of the 

triangularity of the matrix in (3.4). This completes the proof of (3.3).  � 

Concluding comment 

These ideas can be extended to results which further connect the Fibonacci and Bernoulli 

recurrence relations. 
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