A new symmetric endomorphism operator for some generalizations of certain generating functions

Ali Boussayoud, Abdelhamid Abderrezzak and Serkan Araci
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 4, Pages 45—58
DOI: 10.7546/nntdm.2018.24.4.45-58
Download full paper: PDF, 207 Kb

Details

Authors and affiliations

Ali Boussayoud
LMAM-Department of Mathematics
Mohamed Seddik Ben Yahia University, Jijel, Algeria

Abdelhamid Abderrezzak
University of Paris 7, LITP
Place Jussieu, Paris cedex 05, France

Serkan Araci
Department of Economics, Faculty of Economics, Administrative and Social Sciences
Hasan Kalyoncu University, TR-27410, Gaziantep, Turkey

Abstract

In this article, we introduce new symmetric endomorphism operators by making use of appropriate infinite product series. The main results show that after direct calculations, the proposed operators are qualified to obtain generating functions for k-Jacobsthal numbers and Tchebychev polynomials of the first and second kind.

Keywords

  • Symmetric functions
  • Mersenne numbers
  • k-Jacobsthal numbers

2010 Mathematics Subject Classification

  • 05A15
  • 05E05
  • 11B39

References

  1. Abderrezzak, A. (1994) Generalisation de la transformation d’Euler d’une serie formelle, Adv. Math., 103, 180–195.
  2. Abderrezzak, A. (1995) Generalisation d’identites de Carlitz, Howard et Lehmer, Aequationes Math., 49, 36–46.
  3. Baeder, M. A., Cohl, H. S. & Volkmer, H. (2015) Generalizations of generating functions for higher continuous hypergeometric orthogonal polynomials in the Askey scheme, J. Math. Anal. Appl., 427, 377–398.
  4. Boussayoud, A., Abderrezzak, A. & Kerada, M. (2015) Some applications of symmetric functions, Integers., 15, Article No. 48, 1–7.
  5. Boussayoud, A. & Sahali, R. (2015) The application of the operator Lb1b2–k in the series Σj=0+∞ abjzj, J. Adv. Res. Appl. Math., 7, 68–75.
  6. Boussayoud, A. & Kerada, M. (2014) Symmetric and Generating Functions, Int. Electron. J. Pure Appl. Math., 7, 195–203.
  7. Boussayoud, A., Kerada, M., Sahali, R. & Rouibah, W. (2014) Some Applications on Generating Functions, J. Concr. Appl. Math., 12, 321–330.
  8. Boussayoud, A., Abderrezzak, A. & Kerada, M. (2013) A Generalization of Some Orthogonal Polynomials, Springer Proc. Math. Stat., 41, 229–235.
  9. Bozejko, M., Lytvynov, E. W. &. Rodionova, I. V. (2015) An extended anyon Fock space and noncommutative Meixner-type orthogonal polynomials in infinite dimensions, Russ. Math. Surv., 70 (5), 857-899.
  10. Boubalouta, K., Boussayoud, A. & Kerada, M. (2018) Symmetric Functions for k-Fibonacci Numbers and Orthogonal Polynomials, Turkish Journal of Analysis and Number Theory, 6 (3), 98–102.
  11. Cullinan, J. & Hajir, F. (2014) On the Galois groups of Legendre polynomials, Indag. Math., 25 (3), 534–552.
  12. Doha, E. H., Abd-Elhameed, W. M. & Bhrawy, A. H. (2013) New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials, Collect. Math., 64 (3), 373–394.
  13. Foata, D. & Han, G. N. (1990) Nombres de Fibonacci et Polynomes Orthogonaux. in M. Morelli and M. Tangheroni, eds., Leonardo Fibonacci: Il Tempo, Le Opere, L’Eredita Scientica, Pacini, Rome, 179–200.
  14. Foata, D. (1977) Combinatoire et representation du Groupe symetrique, Lect. Notes Math, Vol. 579, 339 pages.
  15. Falcon, S. (2011) On the k-Lucas numbers, Int. J. Contemp. Math. Sci., 21, 1039–1050.
  16. Guillemin, V. & Sabatini, S. & Zara, S. C. (2014) Polynomial assignments, Indag. Math., 25 (5), 992–1018.
  17. Johnston, S. J., Jooste, A. & Jordaan, K. (2016) Quasi-orthogonality of some hypergeometric polynomials, Integral Transforms Spec. Funct., 27 (2), 111–125.
  18. Lascoux, A. (2004) Addition of 1: Application to Arithmetic. Semin Lothar Comb., 52, 1–9.
  19. Lascoux, A. & Fu, A.M. (2005) Partition Analysis and Symmetrizing Operators, J. Comb. Theory, Ser. A., 109, 339–343.
  20. Macdonald, I.G. (1997) Symmetric Functions and Hall Polynomias, Oxford University Press.
  21. Merca, M. (2014) A Generalization of the symmetry between complete and elementary symmetric functions, Indian J. Pure Appl. Math., 45 (1), 75–89.
  22. Panzone, P. A. (2012) On the generating functions of Mersenne and Fermat primes, Collect. Math., 63 (1), 59–69.
  23. Srivastava, H. M. & Djordjevic G. B. (2011) Some generating functions and other properties associated with the generalized Hermite and related polynomials, Integral Transforms Spec. Funct., 22 (12), 895–906.
  24. Stanic, M. P. (2014) Multiple orthogonal polynomials on the semicircle and applications, Appl.Math.Comput., 243, 269–282.
  25. Toufik, M. (2004) A formula for the generating functions of powers of Horadam’s sequence, Australas. J. Comb., 30, 207–212.

Related papers

Cite this paper

APA

Boussayoud, A., Abderrezzak, A., & Araci, S. (2018). A new symmetric endomorphism operator for some generalizations of certain generating functions. Notes on Number Theory and Discrete Mathematics, 24(4), 45-58, doi: 10.7546/nntdm.2018.24.4.45-58.

Chicago

Boussayoud, Ali, Abdelhamid Abderrezzak and Serkan Araci. “A New Symmetric Endomorphism Operator for Some Generalizations of Certain Generating Functions.” Notes on Number Theory and Discrete Mathematics 24, no. 4 (2018): 45-58, doi: 10.7546/nntdm.2018.24.4.45-58.

MLA

Boussayoud, Ali, Abdelhamid Abderrezzak and Serkan Araci. “A New Symmetric Endomorphism Operator for Some Generalizations of Certain Generating Functions.” Notes on Number Theory and Discrete Mathematics 24.4 (2018): 45-58. Print, doi: 10.7546/nntdm.2018.24.4.45-58.

Comments are closed.